[Type text]

Unit-IV
		ARITHMETIC
ARITHMETIC:
· A basic operation in all digital computers is the addition or subtraction of two numbers.
· Arithmetic operations occur at the machine instruction level.
· They are implemented basic functions such as AND, OR, NOT and Exclusive OR (XOR) in the Arithmetic and Logic Unit subsystem of the processor.
· In this chapter present Logic circuit used to implement Arithmetic operations.
· Compared with Arithmetic operations, logic operations are simple to implement using combinational circuitry.  Whereas carry / barrow lateral signals are required in Arithmetic operations.
ADDITION AND SUBTRACTION OF SIGNED NUMBERS: 
[image: ]

· The Logic truth table for sum and carryout are the outputs for adding equally weighted bits xi and yi, in two numbers X and Y. 
· The logic expressions for these functions are also shown, along with an example of addition of the 4-bit unsigned numbers 7 and 6. 
· Each stage of the addition process must accommodate a carry-in bit. We use Ci, to represent the carry-in to the ith stage, which is the same as the carryout from the (i - 1) th stage. 


Full Adder:
The logic expression for Si in can be implemented with a 3-input XOR gate. The carryout function, Ci +1 is implemented with a two-level AND-OR logic circuit.                    A convenient symbol for the complete circuit for a single stage of addition, called a full adder (FA).

[image: ]

n-bit Ripple Carry Adder:
A cascaded connection of such n full adder blocks, as forms a parallel adder & can be used to add two n-bit numbers. Since the carries must propagate or ripple, through this cascade the configuration is called an n-bit ripple-carry adder. 

[image: ]







Cascade of k n-bit Adders:
A cascaded the carry-in, Co, into the least-significant-bit (LSB) position provides a convenient means of adding 1 to a number. Take for instance; forming the 2's- complement of a number involves adding 1 to the 1’s-complement of the number. The carry signals are also useful for interconnecting k adders to form an adder capable of handling input numbers that are kn bits long.
[image: ]

Addition / Subtraction Overflow:
· Overflow can occur only when adding two numbers that have the same sign.  
· The carry bit from the MSB position is not a sufficient in detect overflow when adding signed numbers.  
· When both operands X and Y have the same sign, an overflow occurs.  
· The logical expression to detect overflow can be given as 
[image: ]
· It can also that overflow occurs when the carry bits Cn and Cn-1 are different.
· Therefore a simple alternative circuit for detecting overflow can be obtained by implementing the expression [image: ] with an XOR gates.










Addition / Subtraction Logic Unit:
· The n – bit adder can be used to add 2’s complement number X and Y, where the    Xn-1 and Yn-1 bits are the sign bits. In this case the carry out bit Cn is not part of the answer. 
· In order to perform the subtraction operation X – Y on 2’s complement numbers       X and Y, we form the 2’s complement of Y and add it to X. 
· The Logic circuit network can be used to perform either addition or subtraction based on the value applied to the Add / Sub input control line.
· This line is set to 0 for addition applying the Y vector unchanged to one of the adder input along with a carry-in signal C0 of 0.
· When the Add / Sub control line is set to 1, the Y vector is 1’s complemented by the XOR gates and Co is set 1 to complete the 2’s complement of Y.
· Remember that 2’s complementing a negative number is done in exactly the same manner as for a positive number.  An XOR gate can be added to detect the overflow condition [image: ].
[image: ]
DESIGN OF FAST ADDERS: 
· In an n-bit parallel adder (ripple-carry adder), there is too much delay in developing the outputs, so through sn-1 and cn. 
· The delay through a network depends on the integrated circuit technology used in fabricating the network and on the number of gates in the paths from inputs to outputs (propagation delay). 
· The delay through any combinational logic network constructed from gates in a particular technology is determined by adding up the number of logic-gate delays along the longest signal propagation path through the network.
· In practice, a number of design techniques have been used to implement high- speed adders. 
· In order to reduce this delay in adders, an augmented logic gate network structure may be used. One such method is to use circuit designs for fast propagation of carry signals (carry prediction).  
Carry Lookahead Additions:
As it is clear from the previous discussion that a parallel adder is considerably slow & a fast adder circuit must speed up the generation of the carry signals, it is necessary to make the carry input to each stage readily available along with the input bits.

[image: ]
[image: ]

[image: ]

Higher Level Generate & Propagate Functions

[image: ]

[image: ]


MULTIPLICATION OF POSITIVE NUMBERS:
· The usual algorithm for multiplying integers by hand is illustrated in figure for the binary number system. 
· This algorithm applies to unsigned numbers and to positive signed numbers. 
· The product of two n-digit numbers can be accommodated in 2n digits, so the product of the two 4-bit numbers in this example fits into 8 bits. 
· In the binary system, multiplication by the multiplier bit ‘1’ means the multiplicand is entered in the appropriate position to be added to the partial product. 
· If the multiplier bit is ‘0’, then 0s are entered, as indicated in the third row of the shown example

[image: ]
[image: ]

[image: ]
· The main component in each cell is a full adder (FA).
· The AND Gate in each cell determines whether a multiplicand bit Mj is added to the incoming partial product bit, based on the value of the multiplier bit Qi.
· Each row i, where 0 < i < 3 adds the multiplicand to the incoming partial product PPi to generate the outgoing partial product PP(i+1), if Qi=1.
· If Qi=0, PPi is passed vertically downward unchanged.
· PP0 is all 0’s and PP4 is the desired product.
· The multiplicand is Shifted Left one position per row by the diagonal signal path.
· The simplest way to perform multiplication is to use the added circuitry in the ALU for a number of sequential steps.
· The block diagram in hardware arrangement for sequential multiplication.
· This circuit performs multiplication by using single n-bit adder n times to implement the spatial addition performed by the n rows of ripple-carry adders.
[image: ]
· Flowchart for multiplication operation is 
[image: ]=
=

	[image: ]
Problem: 
If the product of two 4 bit unsigned numbers multiplier (1011) and Multiplicand (1101)
[image: ]

SIGNED-OPERAND MULTIPLIATION: 
· Multiplication of 2's-complement signed operands, generating a double-length product is still achieved by accumulating partial products by adding versions of the multiplicand as decided by the multiplier bits. 
· First, consider the case of a positive multiplier and a negative multiplicand. When we add a negative multiplicand to a partial product, we must extend the sign-bit value of the multiplicand to the left as far as the product will extend. 
· In Figure 9, for example, the 5-bit signed operand, - 13, is the multiplicand, and +11, is the 5 bit multiplier & the expected product -143 is 10-bit wide. The sign extension of the multiplicand is shown in red color. Thus, the hardware discussed earlier can be used for negative multiplicands if it provides for sign extension of the partial products.
[image: ]

· For a negative multiplier, a straightforward solution is to form the 2's- complement of both the multiplier and the multiplicand and proceed as in the case of a positive multiplier. 
· This is possible because complementation of both operands does not change the value or the sign of the product. 
· In order to take care of both negative and positive multipliers, BOOTH algorithm can be used.

Booth Algorithm 
· The Booth algorithm generates a 2n-bit product and both positive and negative 2's complement n-bit operands are uniformly treated.
· This algorithm considers a multiplication operation in which the multiplier is positive and has a single block of 1’s.
· However we can reduce the number of required operations by regarding this multiplier.

[image: ]

· Example of  Booth recode the multiplier 11010 for Booth multiplication

[image: ]

Problem:- The Booth recoding problem multiply the  multiplicand is 01101(+13) and multiplier is 11010 (-6)
	[image: ]

Booth algorithm is a multiplication algorithm that multiplies two signed binary numbers in 2’s compliment notation with applies to the Logic Circuited.
  
Procedure:
· Let M is the multiplicand 
· Let Q is the multiplier
· Consider a 1-bit register Q-1 and initialize to 0.
· Consider A (Accumulator ) register and initialize to 0
· The shift, add and subtract control logic scans bits Q0 and Q-1 one at a time and generates the control signals as shown in the table.

	Q0
	Q-1
	Add / Subtract enable
	Shift

	0
	0
	0
	1

	0
	1
	1
	1

	1
	0
	1
	1

	1
	1
	0
	1



Conditions:-
· If Q0,Q-1 are same i.e 0 0 or 1 1 then, perform Arithmetic Right Shift by 1 Bit
· If Q0,Q-1 = 1 0 then, perform A = A – M and then Arithmetic Right Shift by 1 Bit
· If Q0,Q-1 = 0 1 then, perform A = A + M and then Arithmetic Right Shift by 1 Bit

Flowchart:-







FAST MULIPLICATION: 
There are two techniques for speeding up the multiplication operation. The first technique guarantees that the maximum number of summands (Bit pair recoding of multipliers) that must be added is n/2 for n-bit operands. The second technique reduces the time needed to add the summands (Carry-Save Addition of summands method).

Bit-Pair Recoding of Multipliers: 
· This bit-pair recoding technique halves the maximum number of summands. 
· To speed up the multiplication process in the Booth Algorithm a technique called Bit pair recoding.
· It is derived from the Booth algorithm.
· In this technique, the Booth recoded multiplier bits are grouped in pairs.
· Then each pair is represented by its equivalent single bit multiplier reducing total number of multiplier bits to half.
· It shows a table of the multiplicand selection decisions for all possibilities.
[image: ]

· An example of bit pair recoding of the multiplier sign extension

[image: ]




Problem:- The Multiply given signed 2’s complement numbers using bit pair recoding multiply the  multiplicand is 01101(+13) and multiplier is 11010 (-6)

[image: ]

Carry Save Addition of Summands: 
· Multiplication requires the addition of several summands
· A technique called Carry – Save Addition speeds up the addition process.
· Delay through the Carry – Save Array is less than delay through the Ripple Carry Array.  This is, because S and C vector outputs from each row are produced in parallel in one full adder delay.
[image: ]
· To increase the speed of the addition process many times technique called Carry – Save Addition is used.

[image: ] [image: ]


Example Problem:
[image: ]


INTEGER DIVISION: 
Positive-number multiplication operation is done manually in the way it is done in a logic circuit. A similar kind of approach can be used here in discussing integer division. First, consider positive-number division. It shows examples of decimal division and its binary form of division. First, let us try to divide 2 by13, and it does not work. Next, let us try to divide 27 by 13. Going through the trials, we enter 2 as the quotient and perform the required subtraction. The next digit of the dividend, 4, is brought down, and we finish by deciding that 13 goes into 14 once and the remainder is 1. Binary division is similar to this, with the quotient bits only 0 and 1. 

[image: ]

A circuit that implements division by this longhand method operates as follows: It positions the divisor appropriately with respect to the dividend and performs a subtraction. If the remainder is zero or positive, a quotient bit of 1 is determined, the remainder is extended by another bit of the dividend, the divisor is repositioned, and sub- traction is performed. On the other hand, if the remainder is negative, a quotient bit of 0 is determined, the dividend is restored by adding back the divisor, and the divisor repositioned for another subtraction.
[image: ]
· A Logic Circuit arrangement that implements two types of Binary Division.
· That is 1) Restoring Division	2) Non Restoring Division.

Restoring Division Algorithm:
· An n-bit positive divisor is loaded into register M and an n-bit positive dividend is loaded into register Q at the start of the operation. 
· Register A is set to 0. After the division is complete, the n-bit quotient is in register Q and the remainder is in register A. 
· The required subtractions are facilitated by using 2's-complement arithmetic. The extra bit position at the left end of both A and M accommodates the sign bit during subtractions.
· The following algorithm performs restoring division.
1. Shift A and Q left one binary position. 
2. Subtract M from A, and place the answer back in A.
3. If the sign of A4 is 1, set q0 to 0 and add M back to A (that is, restore A); otherwise, the sign of A4 is 0 set q0 to 1.
4. Repeat steps 1, 2 and 3 n times.









Example of Restoring Method division of 4-bit dividend is 1000(8) and divisor is 0011(3)

[image: ]

Non restoring Division Algorithm: 
· The restoring-division algorithm can be improved by avoiding the need for restoring A after an unsuccessful subtraction. 
· Subtraction is said to be unsuccessful if the result is negative. Consider the sequence of operations that takes place after the subtraction operation in the preceding algorithm. 
· If A is positive, we shift left and subtract M, that is, we perform 2A - M. 
· If A is negative, we restore it by performing A + M, and then we shift it left and subtract M. This is equivalent to performing 2A + M. 
· The q0 bit is appropriately set to 0 or 1 after the correct operation has been performed. We can summarize this in the following algorithm for Non Restoring Division. 
· Step 1: Do the following n times: 
1. If the sign of A4 is 0, shift A and Q left one bit position and subtract M from A; otherwise, the sign of A4 is 1, shift A and Q left and add M to A. 
2. Now, if the sign of A4 is 0, set q0 to 1; otherwise if the sign of A4 is 1,          set q0 to 0. 
· Step 2: If the sign of A is 1, add M to A. 
· Step 2 is needed to leave the proper positive remainder in A at the end of the n cycles of Step 1.

Example of Non Restoring Method division of 4-bit dividend is 1000(8) and             divisor is 0011(3)
[image: ]
FLOATING POINT NUMBERS AND OPERATIONS:
· Floating point numbers are represented in Scientific notation of fraction (F) and exponent (E) with a radix of 2 in the form of F x 2E.  Both E and F can be positive as well as negative.
· In the 2’s complement system, the signed value F represented by the n-bit binary fraction B = b0.b - 1b -2 …..b-(n-1) is given by 
F(B) = -b0 x 20 + b-1 x 2-1 +b-2 x 2-2 + ... + b-(n-1) x 2-(n-l)
Where the range of F is -1 ≤ F ≤ 1 -2-(n-1), consider the range of values represented in a 32-bit, signed, fixed- point format.
· Modern computers adopt IEEE-754 standard for representing floating point numbers.  This standards for representing floating point numbers has been developed and specified in detail by Institute of Electrical and Electronics Engineers.  There are two types of representation format.  
1) 32 bit Single precession floating point representation
2) 64 bit Double precession floating point representation

IEEE – 754 standards for 32 bit Single precession floating point representation:

[image: ]
· The most significant bit is the sign bit(S) with 0 for positive numbers and 1 for negative numbers.
· The Following 8 bits represented exponent (E).  Biased exponent represented in Excess – 127 formats.  The relation with original exponent E| is 
E| = E + 127
		Range of E| , 0 < E| < 255
		But 0 and 255 values are special values.
· Therefore the range of E| for normal values is 1 < E| < 254.  This means that the actual exponent E is in the range -126 < E < 127.
· The last 23 bits represent the mantissa.  Since binary normalization is used, the most significant bit of the mantissa is always equal to 1.  The 23 bits stored in the M field actually represented the fractional part of the mantissa, the bits to the right of the binary point.

IEEE – 754 standards for 64 bit Double precession floating point representation:

[image: ]
· The double precision format has increased exponent and mantissa ranges.
· The most significant bit is the sign bit(S) with 0 for positive numbers and 1 for negative numbers.
· The Following 11 bits represented exponent (E).  Biased exponent represented in Excess – 1023 formats.  The relation with original exponent E| is 
E| = E + 2047
		Range of E| , 0 < E| < 2047
		But 0 and 255 values are special values.
· Therefore the range of E| for normal values is 1 < E| < 2046.  This means that the actual exponent E is in the range -1022 < E < 1023.
· The last 52 bits represent the mantissa.  Since binary normalization is used, the most significant bit of the mantissa is always equal to 1.  The 52 bits stored in the M field actually represented the fractional part of the mantissa, the bits to the right of the binary point.


Implementing Floating Point Operations:
[image: ]
[image: ]

[image: ]
UNIT – V
BASIC PROCESSING UNIT
BASIC PROCESSING FUNDAMENTAL CONCEPT:
[image: ]
[image: ]





SINGLE BUS ORGANIZATION:
[image: ]

[image: ]
[image: ]
REGISTER TRANSFERS:
[bookmark: _GoBack][image: ]
[image: ]

[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]

[image: ]
[image: ]
[image: ]


[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]

[image: ]
[image: ]


[image: ]
[image: ]
[image: ]

MICRO PROGRAMMED CONTROL:
[image: ]
[image: ]
[image: ]
[image: ]


[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]



[image: ]







	31
	



image3.png
T Y
Sn-t
Most significant bit Least significant bit
(MSB) position (LSB) position

An n-bit ripple-carry adder




image4.png
Sta-t Stk S2a-1 " n-1

Cascade of k n-bit adders




image5.png
Overflow = Xp-1yn-15-1 + Fa-1 Fp-1a-1




image6.png
By




image7.png
Add/Sub
control

a1 4l
Binary addifion/subfraction logic circuit.




image8.png
* The logic expression for sj(sum) and c;,,(carry-out) of stage i are
Si=Xi+Yi+Ci ------(1) Cir1=XiYi+XCi+YiCi
 Factoring (2) into
Ciar=XYit(XitYi)Ci
we can write
C:1=G+PC where G;=xy; and Pi=x+y;
« The expressions G; and P; are called generate and propagate functions (Figure 9.4).
« If Gi=1, then c.,;=1, independent of the input carry c;. This occurs when both x;and y;are 1.
Propagate function means that an input-carry will produce an output-carry when either x;=1 or y;
« All G; and P, functions can be formed independently and in parallel in one logic-gate delay.
« Expanding ¢; terms of i-1 subscripted variables and substituting into the ci;; expression, we obtain
Cii1=G+PG +PP1Gio. + v . . . +P,Go+PPiy . . . PoCo
« Conclusion: Delay through the adder is 3 gate delays for all carry-bits &
4 gate delays for all sum-bits.
« Consider the design of a 4-bit adder. The carries can be implemented as
€1=Go+PoCo
€2=G;+P1Go+P;PoCo
2+P2G1+P2P1Go+P2P1PoCo
C4=G3+P3G,+P5P.G, +P3P,P,Go+PsPP;Pyc,
« The carries are implemented in the block labeled carry-lookahead logic. An adder implemented in this
form is called a Carry-Lookahead Adder.
« Limitation: If we try to extend the carry-lookahead adder for longer operands, we run into a problem
of gate fan-in constraints.

()





image9.png
(a) Bit-stage cell




image10.png
G . P
(b) 4-bit adder
A 4-bit carry-lookahead adder.




image11.png
* 16-bit adder can be built from four 4-bit adder blocks
* These blocks provide new output functions defined as Gy and Py,

where k=0 for the first 4-bit block,

k=1 for the second 4-bit block and so on.

o In the first block,

Po=PsP,P,P,

&

Go=G3+P3G,+P3P,G, +P3P,P, Gy
* The first-level G; and P; functions determine whether bit stage i generates or propagates a carry, and
the second level G, and Py functions determine whether block k generates or propagates a carry.
* Carry ci6 is formed by one of the carry-lookahead circuits as

€16=G3+P3G,+P3P2G, +P3P,P, Go+PsP,P;Poco
« Conclusion: All carries are available 5 gate delays after X, Y and ¢, are applied as inputs.




image12.png
M2 Nisa2 s Vs Y14 V14 Yo Yo

€1 -

Carry-lookahead logic

Gfl 4
A 16-bit carry-lookahead adder built from 4-bit adders




image13.png
1101 (13) Multiplicand M
x 1011 (11) Multiplier Q
1101
1101
0000
1101
10001111 (143) Product P

(a) Manual muitiplication algorithm




image14.png
Multiplicand

Patialproduct 0 my’0 my%o om0 mg

(PPO) l l ‘ l

PP3

PP4 =p;, pg. . - ., Py = Product

P1 Ps Ps Py Py




image15.png
Bit of incoming partial product (PPi)

m
i

Typical cell

Bit of outgoing partial product [PP(i + 1)]

(b) Array implementation
Array multiplication of unsigned binary operands.




image16.png
SEQUENTIAL CIRCUIT BINARY MULTIPLIER
« Registers A and Q combined hold PP;(partial product)
while the multiplier bit g; generates the signal Add/Noadd.
« The carry-out from the adder is stored in flip-flop C
* Procedure for multiplication:
1) Multiplier is loaded into register Q,
Multiplicand is loaded into register M and
C & A are cleared to 0.
2) If go=1, add M to A and store sum in A. Then C, A and Q are shifted right one bit-position.
If go=0, no addition performed and C, A & Q are shifted right one bit-position.
3) After n cycles, the high-order half of the product is held in register A and
the low-order half is held in register Q.





image17.png
CA o
M Multiplicand|
Q  Muliplier
Count





image18.png
Register A (initially 0)

‘ Shift right

Multiplicr Q

Add/Noadd
control

Multiplicand M

(a) Register configuration




image19.png
110
Initial configuration
0] [000 To11
c A Q
0 110 1011 Add
0 011 110|\shm }ancyclc
1 001 1101
0 100 1110\snm }Secom:ycle
0 100 O 6 Nusdd} .
“Third cycle
0 010 ||1|\smn eyl
1 000 11
0 100 114 it }F"‘"“"“‘
R —

Product




image20.png
00 1 1 (1)
X0 1 0 1 1 (+I)

Signexension’s 00 0 0 0 0

T Lo 1 L1000 1 (14




image21.png
Muliplier | yersion of maltiplicand
e selected by bit
Biti Biti-1

o 0xM

1 S1xM
1o “1xM
1 1 0xM





image22.png
" Implied 0 to right of LSB




image23.png
0

0

(+13)

o

1

0-1+1-10

0000000000

1010 (-6

x 1

10011

1

0ooo0oo1

1

01

1001

1

000000

(-78)

10010

0




image24.png
Muliplier bit-pair | Muliplir bit on the right Multiplicand

T i selected at position i

0 0 0xM
+1xM
+1xM
+2xM
-2xM
—1xM
—1xM
0xM

i

0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

e Vg e o

Table of multiplicand selection decisions
Multiplier bit-pair recoding.




image25.png
Signexension~~ (7] | | o 1 o [9]=~" ImplicdOtorightof LSB

0 0 -1 + -1 0

0 -1 -2
Example of bit-pair recoding derived from Booth recoding




image26.png
(+13)

1010 (-6)

x

0
0-1+1-1 0

0000000000

10011

1

00001

0

10011

000000

110010 (-78)

10011

10011

1

000000

10010

101

Multiplication requiring only n/2 summands.




image27.png
* Consider the array for 4*4 multiplication.
« Instead of letting the carries ripple along the rows, they can be "saved” and introduced into the next
row, at the correct weighted positions.

o msgo mdo mido modo





image28.png
0 0 0 1 0 0 1 1 (2535 Product




image29.png
c B A
Level 1 CSA

R
Level 2C5A

G s
[ Level 3CSA
€ sy
Final addition
Product

Schamati reprasenotion of he cormy-save
odditon sperations




image30.png
o -0 =flo - e ele o =~ -]~
- o= = “l= o =|e of -

Y “|= e o|~ -]e

B s o|le of -




image31.png
21 10101

127 1101 J100010010
2 ol
1 10000
R 101
[ o,

1101

1




image32.png
Shift eft
Qo] eee |4
i B
Dividend Q
Quotient
Setting
AddSubtract
Control
sequencer

Ll = m
Divisor M

Circuit rrangement for binory division.




image33.png
Initially

shift
Subtract
Set g,

Restore

Shift
Subtract

Set gy
Restore

Shift
Sublract
Set g
shift
Sublract

Set g
Restore

000 0 o0 [0][0]
001 Quiis)
[

@0 0

00010 om@[{]
11101 @O
DI

— AP <= s
Remainder Quotient

A restoring division example.

First cycle

Second cycle

Third cycle

Fourth cycle




image34.png
Initally 00000 1000
00011
Shift 00001 000004 Breye
Subtract 1 1 10 1 :
Set gy (i?lllo unn?
Shift 11100 0o
Add 00011 Second cycle
Set gy f| TEN 0 0 [o][0]
shift 11010 o00o]
Add 00011 Third cycle
Set gy 0001 0 [0)[0)[1]
Shift 00010 0]70]M
Subtract 1 1101 Fourth cycle
Setq, (|?| 11 [Elele
o
Quotient
Add [
00011 Restore remainder
00010





image35.png
.l 8-bit signed 23bit
0 signifies + Lin mantissa fraction
| sgnifis . _excess127
representation
Value represented = £1.M x 2

Single precision

E127




image36.png
11-bit excess-1023 52-bit
exponent mantissa fraction




image37.png
sbirctoe
E—x
20
R, £ My ot
* x * [ R=asn




image38.png
o First compare exponents to determine how far to shift the mantissa of the number with the smaller
exponent.
* The shift-count value n

— is determined by 8 bit subtractor &

— is sent to SHIFTER unit.
 In step 1, sign is sent to SWAP network (Figure 9.26).

If sign=0, then E,>E; and mantissas M, & Mj are sent straight through SWAP network.
, then E,<E; and the mantissas are swapped before they are sent to SHIFTER.
o In step 2, 2:! MUX is used. The exponent of result E is tentatively determined as E, if Ex>E; or

Es if E\<Es

 In step 3, CONTROL logic

— determines whether mantissas are to be added or subtracted.

— determines sign of the result.
o In step 4, result of step 3 is normalized. The number of leading zeros in M determines number of bit
shifts(X) to be applied to M.




image39.png
Problem
Represent 1259.125  in single precision and double precision formats.
Solution:
Step 1: Convert decimal number to binary format
125910 =10011101011¢
Fractional Part
0.125:0) =0.001
Binary number = 10011101011+0.001
10011101011.001
Step 2: Normalize the number
10011101011.001=1.0011101011001 x 2°
Step 3: Single precision format:
For a given number 0 and
Bias for single precision format is = 127
E'= E+127 = 104127 = 137
100010014,
Number in single precision format is given as.

11101011001

0, 10001001, 011101011001
L JOI00], Q0L M00L.

Sin  Exponent  Mantissa23 bi

Step 4: Double precision format:
For a given number 0 and M=0011101011001
Bias for double precision format is = 1023
E+1023-10+1023=10330,
=10000001001)
Number in double precision format is given as.

0 1000100, 0011010110010
S T N




image40.png
* To execute an instruction, processor has to perform following 3 steps:
1) Fetch contents of memory-location pointed to by PC. Content of this location s an instruction
t0 be executed. The instructions are loaded into IR, Symbolically, this operation is written as:

Re [[PC]]
2) Increment PC by 4.
PCe [PC] +4
3) Carry out the actions specified by instruction (in the IR).
« The first 2 steps are referred to as Fetch Phase.
Step 3 is referred to as Execution Phase.

« The operation specified by an instruction can be carried out by performing one or more of the

following actions:
1) Read the contents of a given memory-location and load them into a register.
2) Read data from one or more registers.
3) Perform an arithmetic or logic operation and place the result into a register.
4) Store data from a register into 3 given memory-location.

 The hardware-components needed to perform these actions are shown in Figure.




image41.png
Regivr

e
™
Instution
- s

T S R RS N





image42.png
-
s [F R
MAR control logic
Mo
o l -
P T -
lines. | — L3
|
Constant 4 RO
P

globus orgoizotion o he cofopah nsde a processr





image43.png
* ALU and all the registers are interconnected via a Single Common Bus
« Data & address lines of the external memory-bus is connected to the internal processor-bus via MDR
& MAR respectively. (MDR-> Memory Data Register, MAR > Memory Address Register).
 MDR has 2 inputs and 2 outputs. Data may be loaded
— into MDR either from memory-bus (external) o
— from processor-bus (internal).
 MAR's input is connected to internal-bus;
MAR's output is connected to external-bus.
« Instruction Decoder & Control Unit is responsible for
— issuing the control-signals to all the units inside the processor.
— implementing the actions specified by the instruction (Ioaded in the IR).
« Register RO through R(n-1) are the Processor Ret 3
‘The programmer can access these registers for general-purpose use.
« Only processor can access 3 registers Y, 2 & Temp for temporary storage during proaram-execution.
The programmer cannot access these 3 registers.
©InALU, 1) A’input gets the operand from the output of the multiplexer (MUX).
2)'B' input gets the operand directly from the processor-bus.
« There are 2 options provided for 'A" input of the ALU.
 MUX is used to select one of the 2 inputs.
« MUX selects either
— output of Y or
. constant-value 4( which is used to increment PC content).





image44.png
* An instruction is executed by performing one or more of the following operation:
1) Transfer a word of data from one register to another or to the ALU.
2) Perform arithmetic or a logic operation and store the result in a register.
3) Fetch the contents of a given memory-location and load them into a register.
4) Store a word of data from a register into a given memory-location.
« Disadvantage: Only one data-word can be transferred over the bus in a clock cycle.
Solution: Provide multiple internal-paths. Multiple paths allow several data-transfers to take place
parallel.

n




image45.png
AT




image46.png
« Instruction execution involves a sequence of steps in which data are transferred from one register to
another.
« For each register, two control-signals are used: Ri,, & Ri,. These are called Gating Signals.
* Ri,=1 > data on bus is loaded into Ri.
Riou=1 > content of Ri is placed on bus.
Riow=0, 2 bus can be used for transferring data from other registers.
« For example, Move R1, R2; This transfers the contents of register R1 to register R2. This can be
accomplished as follows:
1) Enable the output of registers R1 by setting Rl to 1
This places the contents of R1 on processor-bus.
2) Enable the input of register R2 by setting R2ou to 1.
This loads data from processor-bus into register R4.
« All operations and data transfers within the processor take place within time-periods defined by the
processor-clock.
« The control-signals that govern a particular transfer are asserted at the start of the clock cycle.





image47.png
Input & Output Gating for one Register Bit




image48.png




image49.png
* A 2-input multiplexer is used to select the data applied to the input of an edge-triggered D flip-flop.
=13 mux selects data on bus. This data will be loaded into fip-lop at rising-edge of clock.
Ri;,=0 > mux feeds back the value currently stored in flip-flop
« Q output of flip-flop is connected to bus via a tri-state gate.
Ri,.=0 > gate's output is in the high-impedance state.
Rioe=1 = the gate drives the bus to 0 or 1, depending on the value of Q.





image50.png
PERFORMING AN ARITHMETIC OR LOGIC OPERATION
« The ALU performs arithmetic operations on the 2 operands applied to its A and B inputs.
« One of the operands is output of MUX;

And, the other operand is obtained directly from processor-bus.
« The result (produced by the ALU) is stored temporarily in register Z.
« The sequence of operations for [R3]€[R1]+[R2] is as follows:

1) R, Yoo

2) R2, Selecty, Add, Z,,

3) Zow, R3m
« Instruction execution proceeds as follows:

Step 1 —-> Contents from register R1 are loaded into register Y.

Step2 --> Contents from Y and from register R2 are applied to the A and B inputs of ALU;

Addition is performed &
Result is stored in the Z register.

Step 3 --> The contents of Z register is stored in the R3 register.
« The signals are activated for the duration of the clock cycle corresponding to that step. All other
signals are inactive.




image51.png
FETCHING A WORD FROM MEMORY
« To fetch instruction/data from memory, processor transfers required address to MAR.

At the same time, processor issues Read signal on control-lines of memory-bus.
* When requested-data are received from memory, they are stored in MDR. From MDR, they are

transferred to other registers.




image52.png
* The MDR register has 4 control-signals
1) MDR;» & MDR,y: control the connection to the internal processor data bus &
2) MDR;,e & MDR, control the connection to the memory Data bus.
* MAR register has 2 control-signals.
1) MAR;, controls the connection to the internal processor address bus &
2) MAR,,: controls the connection to the memory address bus.




image53.png
Memory-bos. Intemal processor

daalines R e MDR,, %S
MDR;g. MDR;,

Connection and control signols for register MDR.




image54.png
* The response time of each memory access varies (based on cache miss, memory-mapped 1/0). To
accommodate this, MFC is used. (MFC - Memory Function Completed).
 MFC is a signal sent from addressed-device to the processor. MFC informs the processor that the
requested operation has been completed by addressed-device.
« Consider the instruction Move (R1),R2. The sequence of steps is
1) Ri., MAR;,, Read ;desired address is loaded into MAR & Read command is issued.
2) MDRine, WMFC ;load MDR from memory-bus & Wait for MFC response from memory.
3) MDR., R2in ;load R2 from MDR.
where WMFC=control-signal that causes processor’s control.
circuitry to wait for arrival of MFC signal.




image55.png
e

Tiring of o masery Rod pacin.




image56.png
EXECUTION OF A COMPLETE INSTRUCTION
« Consider the instruction Add (R3),R1 which adds the contents of a memory-location pointed by R3 to
register R1. Executing this instruction requires the following actions:

1) Fetch the instruction.

2) Fetch the first operand.

3) Perform the addition &

4) Load the result into R1.

Step Action

PCout MAR,y, Read, Selectd, Add, Zin,
Zouty PCin; Yin, WMFC

MDRoue, IRin

R3ur, MAR;,, Read

Rlput, Yin, WMFC

MDRyys, Select, Add, Zn

Zout Rlin, End

N e e e e o e

Contol sequence for exscution of the instruction Add (R3].R1





image57.png
 Instruction execution proceeds as follows:
Step1--> The instruction-fetch operation is initiated by
— loading contents of PC into MAR &
— sending a Read request to memory.
The Select signal is set to Select4, which causes the Mux to select constant 4. This value
is added to operand at input B (PC’s content), and the result is stored in Z.
Step2--> Updated value in Z is moved to PC. This completes the PC increment operation and
PC will now point to next instruction.
Step3--> Fetched instruction is moved into MDR and then to IR.
The step 1 through 3 constitutes the Fetch Phase.
At the beginning of step 4, the instruction decoder interprets the contents of the IR. This
enables the control circuitry to activate the control-signals for steps 4 through 7.
The step 4 through 7 constitutes the Execution Phase.
Step4--> Contents of R3 are loaded into MAR & a memory read signal is issued.
Step5--> Contents of R1 are transferred to Y to prepare for addition.
Step6--> When Read operation is completed, memory-operand is available in MDR, and the
addition is performed.
Step7--> Sum is stored in Z, then transferred to R1.The End signal causes a new instruction
fetch cycle to begin by returning to step1.





image58.png
BRANCHING INSTRUCTIONS
* Control sequence for an unconditional branch instruction is as follows:

Step  Action

PCout, MAR;,,, Read, Selectd, Add, Z;,
Zout, PCeny Yen, WMFC

MDRous, Rin

Offset-field-of-IR e, Add, Zin

Zout, PCin, End

Conrol sequence for an unconditional Bronch inskuction.





image59.png
 Instruction execution proceeds as follows:
Step 1-3-> The processing starts & the fetch phase ends in step3.
Step 4--> The offset-value is extracted from IR by instruction-decoding circuit.
Since the updated value of PC is already available in register Y, the offset X is gated onto
the bus, and an addition operation is performed.
Step 5> the result, which is the branch-address, is loaded into the PC.
« The branch instruction loads the branch target address in PC so that PC will fetch the next instruction
from the branch target address.
« The branch target address is usually obtained by adding the offset in the contents of PC.
« The offset X is usually the difference between the branch target-address and the address
immediately following the branch instruction.
« In case of conditional branch,
we have to check the status of the condition-codes before loading a new value into the PC.
e.g.: Offset-field-of-IRau, Add, Z, If N=0 then End
, processor returns to step 1 immediately after step 4.
, step 5 is performed to load a new value into PC.





image60.png
MULTIPLE BUS ORGANIZATION

« Disadvantage of Single-bus organization: Only one data-word can be transferred over the bus in
a dlock cycle. This increases the steps required to complete the execution of the instruction

Solution: To reduce the number of steps, most processors provide multiple internal-paths. Multiple
paths enable several transfers to take place in parallel.

« As shown in figuere, three buses can be used to connect registers and the ALU of the processor.




image61.png
BuA  Bub BusC

Trcremenir

Regiver

e f—

Comstant 4

Memorybes  Address
da lines ines

Three-bus organization of the datoporh




image62.png
* All general-purpose registers are grouped into a single block called the Re:
« Register-file has 3 ports:
1) Two output-ports allow the contents of 2 different registers to be simultaneously placed on
buses A & B.
2) Third input-port allows data on bus C to be loaded into a third register during the same
clock-cycle.
« Buses A and B are used to transfer source-operands to A & B inputs of ALU.
« The result is transferred to destination over bus C.
« Incrementer Unit is used to increment PC by 4.

Step_Action

1 PConi, R=B, NAR,y, Read, TncPC
2 wMre

3 MDRnup, R=B,TRin

4 Rdous Rbourss Selectd, Add, Rbiry End





image63.png
* Instruction execution proceeds as follows:
Step 1--> Contents of PC are

— passed through ALU using R=B control-signal &

— loaded into MAR to start memory Read operation. At the same time, PC is incremented by 4.
Step2--> Processor waits for MFC signal from memory.
Step3--> Processor loads requested-data into MDR, and then transfers them to IR.
Stepd--> The instruction is decoded and add operation takes place in a single step.




image64.png
HARDWIRED CONTROL




image65.png
Conditon

Controlsignals

‘Separation of the decoding and encoding funcions.





image66.png
+ Hardwired control is a method of control unit design |
« The control-signals are generated by using logic circuits such as gates, fip-flops, decoders etc.
+ Decoder/Encoder Block is a combinational-circuit that generates required control-outputs.
depending on state of all its inputs.
« Instruction Decoder
» It decodes the instruction loaded in the IR.
» If IR is an 8 bit register, then instruction decoder generates 2°(256 lines); one for each
instruction.
> It consists of a separate output-lines INS, through INS,,for each machine instruction.
» According to code in the IR, one of the output-lines INS through NS is set to 1, and al
other lines are set to 0.
* Step-Decoder provides a separate signal line for each step in the control sequence.
+ Encoder
» It ets the input from instruction decoder, step ecoder, exteral inputs and condition codes.
» It uses all these inputs to generate individual control-signals: Ya, PCa, Add, End and so on.
» For example (Figure  Z,=T,+T, ADD+T, BR
;This signal is asserted during time-slot T, for all instructions.
during T for an Add instruction.
during T, for unconditional branch instruction





image67.png
* When RUN=1, counter is incremented by 1 at the end of every clock cycle.
When RUN=0, counter stops counting.
« After execution of each instruction, end signal is generated. End signal resets step counter.
« Sequence of operations carried out by machine is determined by wiring of logic circuits, hence
the name “hardwired”.
« Advantage: Can operate at high speed.
« Disadvantages:
1) Since no. of instructions/control-lines is often in hundreds, the complexity of control unit i1s
very high.
2) It is costly and difficult to design.
3) The control unit is inflexible because it is difficult to change the design.





image68.png
Bunch Au

z,
Gonerotion of ha Z, ool signal




image69.png
 Microprogramming is a method of control unit design

« Control-signals are generated by a program similar to machine language programs.

« Control Word(CW) is a word whose individual bits represent various control-signals (like Add, PC;,).
« Each of the control-steps in control sequence of an instruction defines a unique combination of 1s &
0s in CW.

« Individual control-words in microroutine are referred to as microinstructions




image70.png
c ~ o o
s c oo oo
s see - o
e -~ oo o e —
e
~ccocoooe
c - oo - o
cc-oo oo

= o~ o
e
—ccooese
—aemen e~
i '

An example of microinsiructions




image71.png
* A sequence of CWs corresponding to control-sequence of a machine instruction constitutes the
microroutine.
* The microroutines for all instructions in the instruction-set of a computer are stored in a special
memory called the Control Store (CS).
e Control-unit generates control-signals for any instruction by sequentially reading CWs of
corresponding microroutine from CS.
« PPC is used to read CWs sequentially from CS. (uPC-> Microprogram Counter).
« Every time new instruction is loaded into IR, o/p of Starting Address Generator is loaded into uPC.
« Then, UPC is automatically incremented by clock;

causing successive microinstructions to be read from CS.

Hence, control-signals are delivered to various parts of processor in correct sequence.




image72.png
Basic organizofion of o microprogrommed confrol unit.




image1.png
x5y Camy-inc, | Sums; Camy-outc;,,
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

5= BTG+ ENGHANG + 56 = 5 0, 86

Gu= NGHEGEEY;
Example: i
x 7 o111 y :
£¥ = 46 = +00. 1140, CPON_Lpy
Z B T 101

Legend for stage i
Logic specification for a stage of binary addifion.




image73.png
+ Drawback of previous Microprogram control:
» It cannot handle the situation when the control unit is required to check the status of the
condition codes or external inputs to choose between alternative courses of action.
Solution:
> Use conditional branch microinstruction.
« In case of conditional branching, microinstructions specify which of the external inputs, condition-
codes should be checked as a condition for branching to take place.
e Starting and Branch Address Generator Block loads a new address into uPC when a
microinstruction instructs it to do so |
« To allow implementation of a conditional branch, inputs to this block consist of
— external inputs and condition-codes &
— contents of IR.





image74.png
o PPC is incremented every time a new microinstruction is fetched from microprogram memory except
in following situations:

1) When a new instruction is loaded into IR, pPC is loaded with starting-address of microroutine
for that instruction.

2) When a Branch microinstruction is encountered and branch condition is satisfied, uPC is
loaded with branch-address.

3) When an End microinstruction is encountered, pPC is loaded with address of first CW in
microroutine for instruction fetch cycle.




image75.png
Address Microinstruction

0 PCout, MARyy, Read, Selectd, Add, Zip

1 Zonty PCiny Yin, WMFC

2 MDRout, Rin

3 Branch to starting address of appropriate microroutine

% If N=0, then branch to microinstruction 0
2% Offset-field-of-IR ¢, SelectY, Add, Z,
2 Zout, PCin, End

~ " Microroufine for the insiruction Bronch < 0.




image76.png
Clock

Organizaion of the corirol un fo allow condifional branching in the microprogrom.




image77.png
MICROINSTRUCTIONS
e A simple way to structure microinstructions is to assign one bit position to each control-signal
required in the CPU.
« There are 42 signals and hence each microinstruction will have 42 bits.
« Drawbacks of microprogrammed control:
1) Assigning individual bits to each control-signal results in long microinstructions because
the number of required signals is usually large.
2) Available bit-space is poorly used because
only a few bits are set to 1 in any given microinstruction.
« Solution: Signals can be grouped because
1) Most signals are not needed simultaneously.
2) Many signals are mutually exclusive. E.g. only 1 function of ALU can be activated at a time.
For ex: Gating signals: IN and OUT signals (Figure 7.19).
Control-signals: Read, Write.
ALU signals: Add, Sub, Mul, Div, Mod.
« Grouping control-signals into fields requires a little more hardware because
decoding-circuits must be used to decode bit patterns of each field into individual control-signals.
« Advantage: This method results in a smaller control-store (only 20 bits are needed to store the

patterns for the 42 signals).




image78.png
Microiasiruction

Fl (bit) R0ty BEbis) F@bis)  F5(Qbis)

0000: No oanster
0001: PC,py
0010: MR,
011:Zy
0100: RO,,.
0101: Rl
0110: R
IR
1010: TEMP 5,
1011: Offetyy

01: Read
10:Wite

100:Y,, 1111: XOR
——

16ALU
functions

Pk FT(b)  F8(I

O:Slect  O:Noaction 0 Continoe
LSclecth  LWMEC  LEsd

An sxample o o partal format for fekdencoded micoinsuctons.




image79.png
HARDWIRED CONTROL VS MICROPROGRAMMED CONTROL

Hardwired Control

roprogrammed Control

Hardwi control is a control
mechanism to generate control-

icro programmed control is a control
mechanism to generate control-signals

signals by using gates, flip- | by using a memory called control store
flops, decoders, and other | (CS), which contains the control-
digital circuits. signals.

Fast. Slow

functions

Implemented in hardware..

Implemented in software..

Not flexible to accommodate,
new system specifications or
new instructions.

More flexible, to accommodate new
system specification or new instructions
redesign is required.

Ability to handle large | Difficult. Easier.
or complex instruction
to  support | Very difficult. Easy.
g systems &
diagnostic features
Design process Complicated. Orderly and systematic.

Mostly RISC microprocessors.

Mainframes, some microprocessors.

Instructionset size

Usually under 100 instructions.

Usually over 100 instructions.

ROM size

2K to 10K by 20-400  bit

microinstructions.

Chip area efficiency

Uses least area.

Uses more area.





image2.png
Full adder
(FA)

Logic for a single stage




