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Module 5 : DIMENSION ANALYSIS

Overview

Many practical flow problems of different nature can be solved by using equations
and analytical procedures, as discussed in the previous modules. However, solutions
of some real flow problems depend heavily on experimental data and the refinements
in the analysis are made, based on the measurements. Sometimes, the experimental
work in the laboratory is not only time-consuming, but also expensive. So, the
dimensional analysis is an important tool that helps in correlating analytical results
with experimental data for such unknown flow problems. Also, some dimensionless
parameters and scaling laws can be framed in order to predict the prototype behavior
from the measurements on the model. The important terms used in this module may
be defined as below;

Dimensional Analysis: The systematic procedure of identifying the variables in a

physical phenomena and correlating them to form a set of dimensionless group is
known as dimensional analysis.

Dimensional Homogeneity: If an equation truly expresses a proper relationship among

variables in a physical process, then it will be dimensionally homogeneous. The
equations are correct for any system of units and consequently each group of terms in
the equation must have the same dimensional representation. This is also known as
the law of dimensional homogeneity.

Dimensional variables: These are the quantities, which actually vary during a given

case and can be plotted against each other.

Dimensional constants: These are normally held constant during a given run. But,

they may vary from case to case.
Pure constants: They have no dimensions, but, while performing the mathematical

manipulation, they can arise.
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Let us explain these terms from the following examples:
- Displacement of a free falling body is given as, S =S5, + V¢ +% gt’, where, V, is the

initial velocity, g is the acceleration due to gravity, ¢ is the time, S and S, are the
final and initial distances, respectively. Each term in this equation has the dimension

of length [L]and hence it is dimensionally homogeneous. Here, S and ¢ are the

1 .
dimensional variables, g, S,and V, are the dimensional constants and 5 arises due

to mathematical manipulation and is the pure constant.

. . : . . . 1
- Bernoulli’s equation for incompressible flow is written as, Py pry gz =C . Here,

p is the pressure, J is the velocity, z is the distance, p is the density and g is the

acceleration due to gravity. In this case, the dimensional variables are p,V and z, the
1. o
dimensional constants are g, p and C and 5 is the pure constant. Each term in this

equation including the constant has dimension of [Lz T‘zjand hence it is

dimensionally homogeneous.

Buckingham pi Theorem

The dimensional analysis for the experimental data of unknown flow problems leads
to some non-dimensional parameters. These dimensionless products are frequently
referred as pi terms. Based on the concept of dimensional homogeneity, these
dimensionless parameters may be grouped and expressed in functional forms. This
idea was explored by the famous scientist Edgar Buckingham (1867-1940) and the
theorem is named accordingly.

Buckingham pi theorem, states that if an equation involving k variables is
dimensionally homogeneous, then it can be reduced to a relationship among (k—r)
independent dimensionless products, where r is the minimum number of reference

dimensions required to describe the variable. For a physical system, involving &

variables, the functional relation of variables can be written mathematically as,

y=f(%. % %) (5.1.1)
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In Eq. (6.1.1), it should be ensured that the dimensions of the variables on the left side
of the equation are equal to the dimensions of any term on the right side of equation.
Now, it is possible to rearrange the above equation into a set of dimensionless

products (pi terms), so that
I, = o (T1,,11;.......... 1) (5.1.2)

Here, ¢(I1,.11,.......... .IT,_,) is a function of TI, through IT,_, . The required number

of pi terms is less than the number of original reference variables by r. These

reference dimensions are usually the basic dimensions M, L and 7 (Mass, Length

and Time).

Determination of pi Terms

Several methods can be used to form dimensionless products or pi terms that arise in
dimensional analysis. But, there is a systematic procedure called method of repeating
variables that allows in deciding the dimensionless and independent pi terms. For a
given problem, following distinct steps are followed.

Step I: List out all the variables that are involved in the problem. The ‘variable’ is any
quantity including dimensional and non-dimensional constants in a physical situation
under investigation. Typically, these variables are those that are necessary to describe
the “geometry” of the system (diameter, length etc.), to define fluid properties
(density, viscosity etc.) and to indicate the external effects influencing the system
(force, pressure etc.). All the variables must be independent in nature so as to
minimize the number of variables required to describe the complete system.

Step II: Express each variable in terms of basic dimensions. Typically, for fluid

mechanics problems, the basic dimensions will be either M, Land T or F, L and T .

Dimensionally, these two sets are related through Newton’s second law (F =m.a) so

that F=MLT? eg p=ML> or p=FL"'T*. It should be noted that these basic

dimensions should not be mixed.
Step III: Decide the required number of pi terms. It can be determined by using

Buckingham pi theorem which indicates that the number of pi ferms is equal to

(k—r), where k is the number of variables in the problem (determined from Step I)

and r i1s the number of reference dimensions required to describe these variables

(determined from Step II).
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Step IV: Amongst the original list of variables, select those variables that can be
combined to form pi terms. These are called as repeating variables. The required
number of repeating variables is equal to the number of reference dimensions. Each
repeating variable must be dimensionally independent of the others, 1.e. they cannot
be combined themselves to form any dimensionless product. Since there is a
possibility of repeating variables to appear in more than one pi term, so dependent
variables should not be chosen as one of the repeating variable.

Step V: Essentially, the pi ferms are formed by multiplying one of the non-repeating

variables by the product of the repeating variables each raised to an exponent that will

a b c

make the combination dimensionless. It usually takes the form of x, xx, x; where
the exponents a, b and c are determined so that the combination is dimensionless.

Step VI: Repeat the ‘Step V’ for each of the remaining non-repeating variables. The
resulting set of pi terms will correspond to the required number obtained from Step
11

Step VII: After obtaining the required number of pi ferms, make sure that all the pi

terms are dimensionless. It can be checked by simply substituting the basic dimension

(M, L and T') of the variables into the pi terms.

Step VIII: Typically, the final form of relationship among the pi terms can be written

in the form of Eq. (6.1.2) where, I1, would contain the dependent variable in the

numerator. The actual functional relationship among pi ferms is determined from

experiment.
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Illustration of Pi Theorem

Let us consider the following example to illustrate the procedure of determining the
various steps in the pi theorem.
Example (Pressure drop in a pipe flow)

Consider a steady flow of an incompressible Newtonian fluid through a long,
smooth walled, horizontal circular pipe. It is required to measure the pressure drop per
unit length of the pipe and find the number of non-dimensional parameters involved
in the problem. Also, it is desired to know the functional relation among these
dimensionless parameters.

Step I: Let us express all the pertinent variables involved in the experimentation

of pressure drop per unit length (Ap, ) of the pipe, in the following form;

Ap, = f(D,p,,u,V) (5.1.3)
where, D is the pipe diameter, p is the fluid density, u is the viscosity of the fluid
and V' is the mean velocity at which the fluid is flowing through the pipe.

Step II: Next step is to express all the variables in terms of basic dimensions i.e.
M, L and T . It then follows that

Ap,=ML’T?, D=L, p=ML>, u=ML'T™", V=LT"' (5.14)
Step IlI: Apply Buckingham theorem to decide the number of pi terms required. There
are five variables (including the dependent variable Ap,) and three reference
dimensions. Since, k=5 and r =3, only two pi terms are required for this problem.
Step IV: The repeating variables to form pi terms, need to be selected from the list
D, p, pand V. 1t is to be noted that the dependent variable should not be used as
one of the repeating variable. Since, there are three reference dimensions involved, so
we need to select three repeating variable. These repeating variables should be
dimensionally independent, i.e. dimensionless product cannot be formed from this set.
In this case, D, p and 7" may be chosen as the repeating variables.
Step V: Now, first pi term 1s formed between the dependent variable and the repeating
variables. It is written as,

1, =Ap, DV’ p¢ (5.1.5)

Since, this combination need to be dimensionless, it follows that

(ML*12) (L)' (LT7) (ML?) = M°LT* (5.1.6)
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The exponents a, b and ¢ must be determined by equating the exponents for each of
the terms M, L and T i.e.

For M: 1+c¢=0
For L: -24+a+b-3c=0 (5.1.7)
For 7:-2-b6=0

The solution of this algebraic equations gives a =1;b=-2;c =—1. Therefore,

3 Ap, D

1. =
1 sz

(5.1.8)

The process is repeated for remaining non-repeating variables with other additional

variable () so that,

I, =uD'Vp’ (5.1.9)
Since, this combination need to be dimensionless, it follows that
(MT)(z) (LT) (ML) = M°LT (5.1.10)
Equating the exponents,
ForM: 1+ f=0
For L: —1+d+e-3f=0 (5.1.11)
ForT:-1-e=0

The solution of this algebraic equation gives d =—1;e =—1; f =—1. Therefore,

Y7
I, =— 5.1.12
=D ( )
Step VI: Now, the correct numbers of pi ferms are formed as determined in “Step II1”.
In order to make sure about the dimensionality of pi terms, they are written as,
oA D_ (ML*T?)(L)
pVE (ML) (LT
|
_n (ML'T™)(L)
©opVvD (M) (LT)(L)

=M°I°T°
(5.1.13)
=M°I°T°

Step VII: Finally, the result of dimensional analysis is expressed among the pi terms

as,

DAp, H _ L
e _¢(pVD)_¢(Re) (5.1.14)

It may be noted here that Re is the Reynolds number.
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Remarks

- If the difference in the number of variables for a given problem and number of
reference dimensions is equal to unity, then only one Pi term is required to describe
the phenomena. Here, the functional relationship for the one Pi term is a constant
quantity and it is determined from the experiment.

[T, = Constant (5.1.15)
- The problems involving two Pi terms can be described such that

IT, = ¢(I1,) (5.1.16)
Here, the functional relationship among the variables can then be determined by

varying I1, and measuring the corresponding values of IT,.
ymg 11, 1
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Non Dimensional numbers in Fluid Dynamics
Forces encountered in flowing fluids include those due to inertia, viscosity, pressure,

gravity, surface tension and compressibility. These forces can be written as follows;

Inertia force: m.a = p VC;—II/ o pV?I

Viscousforce: 7 4= A % oculV L
v

Pressure force: (Ap) Ao (Ap) L’ (5:2.1)

Gravity force: mgocgp’

Surface tension force: o L

Compressibility force: £, Ao E, I’
The notations used in Eq. (6.2.1) are given in subsequent paragraph of this section. It
may be noted that the ratio of any two forces will be dimensionless. Since, inertia
forces are very important in fluid mechanics problems, the ratio of the inertia force to
each of the other forces listed above leads to fundamental dimensionless groups.

Some of them are defined as given below;

Reynolds number (Re): It is defined as the ratio of inertia force to viscous force.

Mathematically,
Re=PVL _TL
U v

(5.2.2)

where 17 is the velocity of the flow, L is the characteristics length, o, and v are
the density, dynamic viscosity and kinematic viscosity of the fluid respectively. If
Re is very small, there is an indication that the viscous forces are dominant compared
to inertia forces. Such types of flows are commonly referred to as “creeping/viscous
flows”. Conversely, for large Re, viscous forces are small compared to inertial effects
and such flow problems are characterized as inviscid analysis. This number is also

used to study the transition between the laminar and turbulent flow regimes.
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Euler number (Eu) . In most of the aerodynamic model testing, the pressure data are

usually expressed mathematically as,

E, = lAp (5.2.3)
—oV?
S P

where Ap is the difference in local pressure and free stream pressure, V' is the
velocity of the flow, p is the density of the fluid. The denominator in Eq. (6.2.3) is

called “dynamic pressure”. E, is the ratio of pressure force to inertia force and many
a times the pressure coefficient (cp) is a also common name which is defined by same

manner. In the study of cavitations phenomena, similar expressions are used where,
Ap 1s the difference in liquid stream pressure and liquid-vapour pressure. This
dimensional parameter is then called as “cavitation number”.

Froude number (E) It is interpreted as the ratio of inertia force to gravity force.

Mathematically, it is written as,

o (5.2.4)

Vsl

where 7 is the velocity of the flow, L is the characteristics length descriptive of the
flow field and g is the acceleration due to gravity. This number is very much
significant for flows with free surface effects such as in case of open-channel flow. In
such types of flows, the characteristics length is the depth of water. F, less than unity

indicates sub-critical flow and values greater than unity indicate super-critical flow. It

1s also used to study the flow of water around ships with resulting wave motion.

Weber number (7, ): It is defined as the ratio of the inertia force to surface tension

force. Mathematically,

(5.2.5)

where V' 1s the velocity of the flow, L is the characteristics length descriptive of the
flow field, p is the density of the fluid and o is the surface tension force. This
number is taken as an index of droplet formation and flow of thin film liquids in
which there is an interface between two fluids. The inertia force is dominant

compared to surface tension force when, W, [J 1 (e.g. flow of water in a river).
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Mach number (M): It is the key parameter that characterizes the compressibility

effects in a fluid flow and is defined as the ratio of inertia force to compressibility

M:K:L:L
¢ |dp |,
dp p

where 1 is the velocity of the flow, ¢ is the local sonic speed, o is the density of the

force. Mathematically,

(5.2.6)

fluid and E, 1s the bulk modulus. Sometimes, the square of the Mach number 1s

called “Cauchy number” (C,) i.e.

c =PV
“ E

v

(5.2.7)

Both the numbers are predominantly used in problems in which fluid compressibility

is important. When, M, is relatively small (say, less than 0.3), the inertial forces

induced by fluid motion are sufficiently small to cause significant change in fluid
density. So, the compressibility of the fluid can be neglected. However, this number is
most commonly used parameter in compressible fluid flow problems, particularly in

the field of gas dynamics and aerodynamics.

Strouhal number (S,) - It 1s a dimensionless parameter that is likely to be important in

unsteady, oscillating flow problems in which the frequency of oscillation is @ and is
defined as,

S, = %L (5.2.8)
where J is the velocity of the flow and L is the characteristics length descriptive of
the flow field. This number is the measure of the ratio of the inertial forces due to
unsteadiness of the flow (local acceleration) to inertia forces due to changes in
velocity from point to point in the flow field (convective acceleration). This type of
unsteady flow develops when a fluid flows past a solid body placed in the moving

stream.
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In addition, there are few other dimensionless numbers that are of importance

in fluid mechanics. They are listed below;

Parameter Mathematical expression Qualitative definition Importance

- Dissinati |
Prandt] number P = #k” c 1ss:1pa11.0n Heat convection
onduction
2 . .
Eckert number E = v Kinetic energy Dissipation
c, Ty Enthalpy
: . c hal :
Specific heat ratio y=-"+ 1 tEnt la 2] Compressible flow
c, nternal energy
. 11 hn
Roughness ratio — W];l drmllg tiss Turbulent rough walls
ody leng

B(AT)g L'p* Buoyancy

Grashof number G. = Natural onvection

’ u Viscosity
. T Wall temperature
Temperature ratio = P Heat transfer
o Stream temperature

pP—P., Static pressure

Pressure coefficient C = 5 : Hydrodynamics,
" (1/2) pV* Dynamic pressure
Aerodynamics
Lift coefficient C, = L > Lift force Hydrodynamics,Aero
(1/2)ApV Dynamic force
dynamics
Drag coefficient C,= D Drag force Hydrodynamics,

(1/2)4pV? Dynamic force

Aero dynamics
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Modeling and Similitude

A “model” is a representation of a physical system which is used to predict the
behavior of the system in some desired respect. The physical system for which the
predictions are to be made is called “prototype”. Usually, a model is smaller than the
prototype so that laboratory experiments/studies can be conducted. It is less expensive
to construct and operate. However, in certain situations, models are larger than the
prototype e.g. study of the motion of blood cells whose sizes are of the order of
micrometers. “Similitude” is the indication of a known relationship between a model
and prototype. In other words, the model tests must yield data that can be scaled to

obtain the similar parameters for the prototype.

Theory of models: The dimensional analysis of a given problem can be described in

terms of a set of pi terms and these non-dimensional parameters can be expressed in

functional forms;
I1, = ¢(I1L,,T1,,.......... I1,) (5.2.9)

Since this equation applies to any system, governed by same variables and if the
behavior of a particular prototype is described by Eq. (6.2.9), then a similar
relationship can be written for a model.

I, = ¢(11,,. 05, oo I,,.) (5.2.10)
The form of the function remains the same as long as the same phenomenon is
involved in both the prototype and the model. Therefore, if the model is designed and
operated under following conditions,

I1,, =11,; IT,,, =TI,............ and IT,, =11 (5.2.11)

Then it follows that
I1, =11 (6.2.12)
Eq. (6.2.12) is the desired “prediction equation” and indicates that the measured value
of II,, obtained with the model will be equal to the corresponding II, for the
prototype as long as the other pi ferms are equal. These are called “model design

conditions / similarity requirements / modeling laws”.
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Flow Similarity
In order to achieve similarity between model and prototype behavior, all the

corresponding pi terms must be equated to satisfy the following conditions.

Geometric similarity: A model and prototype are geometric similar if and only if all
body dimensions in all three coordinates have the same linear-scale ratio. In order to
have geometric similarity between the model and prototype, the model and the
prototype should be of the same shape, all the linear dimensions of the model can be
related to corresponding dimensions of the prototype by a constant scale factor.
Usually, one or more of these pi ferms will involve ratios of important lengths, which

are purely geometrical in nature.

Kinematic similarity: The motions of two systems are kinematically similar if

homogeneous particles lie at same points at same times. In a specific sense, the
velocities at corresponding points are in the same direction (i.e. same streamline

patterns) and are related in magnitude by a constant scale factor.

Dynamic similarity: When two flows have force distributions such that identical types

of forces are parallel and are related in magnitude by a constant scale factor at all
corresponding points, then the flows are dynamic similar. For a model and prototype,
the dynamic similarity exists, when both of them have same length-scale ratio, time-
scale ratio and force-scale (or mass-scale ratio).

In order to have complete similarity between the model and prototype, all the
similarity flow conditions must be maintained. This will automatically follow if all
the important variables are included in the dimensional analysis and if all the
similarity requirements based on the resulting pi terms are satisfied. For example, in
compressible flows, the model and prototype should have same Reynolds number,
Mach number and specific heat ratio etc. If the flow is incompressible (without free
surface), then same Reynolds numbers for model and prototype can satisfy the

complete similarity.
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Model scales

In a given problem, if there are two length variables / and /,, the resulting
requirement based on the pi terms obtained from these variables is,

i _ P

=1 5213
oL ( )
This ratio 1s defined as the “length scale”. For true models, there will be only one
length scale and all lengths are fixed in accordance with this scale. There are other

‘model scales” such as velocity scale (V—I}" = /Iv) , density scale (& = lpj , Viscosity
Yo,

scale (& = lﬂj etc. Each of these scales needs to be defined for a given problem.
U

Distorted models
In order to achieve the complete dynamic similarity between geometrically similar
flows, 1t is necessary to reproduce the independent dimensionless groups so that
dependent parameters can also be duplicated (e.g. same Reynolds number between a
model and prototype is ensured for dynamically similar flows).

In many model studies, dynamic similarity may also lead to incomplete similarity
between the model and the prototype. If one or more of the similarity requirements

are not met, e.g. in Eq. 6.2.9, if I1,, #I1,, then it follows that Eq. 6.2.12 will not be
satisfied 1.e. IT, =11, . It is a case of distorted model for which one or more of the

similar requirements are not satisfied. For example, in the study of free surface flows,

both Reynolds number ('O—Vlj and Froude number (LJ are involved. Then,

17 Jel

Froude number similarity requires,

V7 (5.2.14)

Je.l, gl

If the model and prototype are operated in the same gravitational field, then the

velocity scale becomes,

%: %=\//1_1 (5.2.15)
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Reynolds number similarity requires,

PVl _ PV (5.2.16)
4, u
Then, the velocity scale is,
Vo _tw P 1 (52.17)
Veooowu p, L,

Since, the velocity scale must be equal to the square root of the length scale, it follows

that

vy (alp) (LY,
= ) (lj (4) (5.2.18)

Eq. (6.2.18) requires that both model and prototype to have different kinematics
viscosity scale. But practically, it is almost impossible to find a suitable fluid for the
model, in small length scale. In such cases, the systems are designed on the basis of
Froude number with different Reynolds number for the model and prototype where
Eq. (6.2.18) need not be satisfied. Such analysis will result a “distorted model” and
there are no general rules for handling distorted models, rather each problem must be

considered on its own merits.



