
 

                

 

                

 

MODULE - 6 

INTRODUCTION TO OPEN CHANNEL FLOW 

Introduction: 

The passage in which the liquid is not completely enclosed by a solid boundary, but has a free 

surface exposed to atmosphere is called open channel. The flow of liquid in this open channel is 

called open channel flow. It flows under atmospheric pressure due to component of gravity with 

a free surface. Since this flow is always associated with a free surface, it is also called free 

surface flow. Figure 1.1 is an example of open channel flow with hydrostatic pressure 

distribution. 

Fig 1.1 Open channel flow with hydrostatic pressure distribution 

The free surface of the flow is the interface between the moving liquid and the stationary or 

moving air, i.e., an interface of two fluids with different densities ρ. The pressure distribution 

within the liquid is always hydrostatic. 

 

Examples of open channel flow: 

 

1. Flow in natural rivers, streams, rivulets and drains 

2. Flow in irrigation canal 

3. Flow in sewer 

4. Flow in culverts with a free surface 

5. Flow in pipes not running full 

6. Flow over streets after heavy rainfall 

Importance of open channel flow: 

Open channels are used to convey irrigation water under a gravitational force to the agricultural 

areas. These are widely used cultivation of lands drinking purpose and hydropower generation. 



The open channel flow is governed by the following forces: 

 

1. Component of gravity (W sinθ) due to bed slope (θ). 

 

2. Inertia force: The resistance change in the velocity of liquid and it is equal to opposite 

direction of applied force. 

3. Gravitational force causes flow in open channels in the presence of bed slope. 

 

4. Surface tension: Mostly negligible, it is only affected when the flow depth is very small 

over any hydraulic structure such as spillway, weir preferably below 7 cm as seen from 

experiments. 

 

5. Viscous force: small for water when flow is turbulent. It is important at low velocity and 

for liquids with high viscosity. 

 

6. Force of resistance due to friction, shear-opposing gravity component due to surface 

roughness. 

7. Wind force. 

 
Different types of pressures subjected in the open channel flow: 

 

Atmospheric pressure: 

 It is pressure exerted by air molecules on the surface of the earth   at given elevation 

Hydrostatic pressure:  

It is pressure exerted by a fluid at equilibrium at a given point   with in the fluid due to 

gravitational force. 

 

Differences between pipe flow and open channel flow: 
 

Pipe flow: 

1. The height of Total Energy line (TEL) from datum is (Z+ p/w+ V2/2g). 

2. Liquid runs full, no free surface.  

3. Flow takes place under pressure.  

4. Analysis of flow becomes simpler than open channel flow due to uniform cross-section  

5. Hydraulic grade line (HGL) is at a height of (p/w +Z) above the datum.  

6. Surface tension force is dominant if diameter is small,  

7. Roughness coefficient varies from low value to high value depends on the material of pipe. 

8. Velocity distribution is parabolic. 



9. In pipe flow Reynolds number is less than 2000 for laminar flow and more than 4000 

for turbulent flow. 

 

Fig 1.2 Total energy head diagram of pipe flow 

 

Open channel flow: 

1. The height of TEL from datum is (Z+y+V2/2g). 

2. Open channel flow has free surface. 

3. Flow takes place due to component of gravity force in the flow direction. 

4. Analysis is complicated due to non-uniform cross-section bed slope and roughness. 

5. HGL coincides with free surface and is at a height of (Z + y) 

6. Surface tension is negligible, only considered at a very low depth. 

7. Roughness coefficient varies along the depth of the flow. 

8. Velocity distribution is logarithmic. 

9. In pipe flow Reynolds number is less than 500 for laminar flow and more than 2000 

for turbulent flow 

 

Fig 1.3 Total energy head diagram of open channel flow 

 

 

 



 

 

Types of Channels: 

 
Prismatic and Non prismatic channel: 

 

A channel in which the cross-sectional shape and size and also the bottom slope are constant is 

termed as a prismatic channel. Most of the man-made (artificial) channels are prismatic 

channels over long stretches. The rectangle, trapezoid, triangle and circle are some of the 

commonly used shapes in manmade channels.  

 

All natural channels generally have varying cross-sections and consequently are non-prismatic. 

 

On the basis of the nature of the boundary open channel can be broadly classified into two 

types:  

(i) Rigid channels, and (ii) mobile boundary channels. 

Based on boundary characteristics: 

 Rigid channels: 

Rigid channels are those in which the boundary is not deformable in the sense that the shape. 

Planiform and roughness magnitudes are not functions of the how parameters. Typical 

examples include lined canals, sewers and non-erodible unlined canals. The flow velocity and 

shear-stress distribution will be such that no major scour, erosion or deposition takes place in 

the channel and the channel geometry and roughness are essentially constant with respect to 

time. The rigid channels can be considered to have only one degree of freedom: for a given 

channel geometry the only change that may take place is the depth of flow which may vary with 

space and time depending upon the nature of the flow.  

 

Mobile boundary channels: 

The boundaries undergo deformation due to the continuous process of erosion and deposition 

due to the flow. The boundary of the channel is mobile in such cases and the flow carries 

considerable amounts of sediment through suspension and in contact with the bed. Such 

channels are classified as mobile-boundary channels. The resistance to flow, quantity of 

sediment transported, channel geometry and planiform, all depend on the interaction of the flow 

with the channel boundaries. A general mobile-boundary channel can be considered to have 

four degrees of freedom. For a given channel not only the depth of flow hut also the bed width, 

longitudinal slope and planiform (or layout) of the channel may undergo changes with space 

and time depending on the type of flow.  

 

  



 

Based on the shape: 

 The following open channels are categorized based on shape 

a. Rectangular  

b. Trapezoidal 

c. Triangular 

d. Parabolic 

e. Exponential 

f. Circular 

g. Semi circular 

h. Wide rectangular 

i. Compound channel 

Types of Flows: 
 

a. Based on time (t): 

a) Steady flow: A flow in which flow parameters such as discharge, velocity and depth 

do not change w.r.t time. 
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In a steady flow turbulent nature of flow exist due to interaction of various forces such as wind, 

surface tension will always be some fluctuations of the flow parameters w.r.t time. For example 

ripples resulting a small fluctuations of depth in a channel due to wind action over the free 

surface than the flow is not a unsteady in this a time of average depth is taken over sufficient 

time interval would indicate constant depth at a section would be taken as steady. steady flow is 

sub classified as (i) steady uniform flow (ii) steady gradually varied flow (iii) steady rapidly 

varied flow. 

(i) Steady uniform flow:  

Steady uniform flow exists only on prismatic channel. Analysis of the very simpler, in this flow 

is said to be steady uniform without any disturbances ripples due to wind force and surface 

tension. 

 (ii) Steady gradually varied flow: 

This flow exists at dams and weir sections and flow is gradually increased. Analysis of flow is 

simpler. The gradual variation of flow exists due to obstruction like dams and weirs. 

(ii) Steady rapidly varied flow: 

This flow exists at canal drop sections and depth of flow is rapidly changes does not respect to 

time. Analysis of flow is simpler. 

 

 



 

 

 

b. Unsteady flow: A flow in which flow parameters such as discharge, velocity and depth 

change w.r.t time. Analysis of unsteady flow is very complicated than steady flows, in 

mathematically 
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Unsteady flows exists widely in non-prismatic channels rarely in prismatic channels due to 

heavy rainfall with pool waves would be presented. Unsteady flow is sub classified as (i) 

Unsteady gradually varied flow (ii) Unsteady rapidly varied flow. 

(i) Unsteady gradually varied flow:  

 Unsteady GVF exists during heavy rainfall in a non-prismatic channel (natural 

channel). 

(ii) Unsteady rapidly varied flow:  

 Unsteady RVF exists at the sudden drop of the gate in hydraulic structures like dams, weirs, 

sluice etc. 

c. Based on variation along the length (s): 

 

a) Uniform flow: A flow in which flow parameters such as discharge, velocity and depth 

do not change w.r.t space (length). 

In mathematically  
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 Unsteady uniform flow never exists in any type of channel. 

b) Non uniform flow: A flow in which flow parameters such as discharge, velocity and 

depth change w.r.t space (length). 

In mathematically  
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Depth of flow varies along length of the channel 

Non uniform flow or varied flow is further classified into three categories. 

(i) Gradually varied flow (ii) Rapidly varied flow (iii) Spatially varied flow 

  



 

 

Gradually varied flow: A flow in which depth changes gradually along length of 

the channel is termed as GVF. 

Frictional resistance plays an important role in this flow. Depth of flow changes due to small 

dam or weir along the flow direction. The passage of flood wave in river is the case of unsteady 

gradually varied flow. 

If the change of depth in a varied flow is gradual so that the curvature of streamlines is not 

excessive, such a flow is said to be a gradually varied flow (GVF). Frictional resistance plays 

an important role in these flows. The hacking up of water in a stream due to a dam or drooping 

of the water surface due to a sudden drop in a canal bed are examples of steady GVF. The 

passage of a flood wave in a river is a case of unsteady GVF. 

i. Rapidly varied flow:  

A flow in which depth changes suddenly over a short length of the channel is termed as rapidly 

varied flow. The frictional resistance is in significant. 

If the curvature in a varied flow is large and the depth changes appreciably over short lengths, 

such a phenomenon is termed as rapidly varied/low (RVF). The frictional resistance is 

relatively insignificant in such cases and it is usual to regard RVF as a local phenomenon. A 

hydraulic jump occurring below a spillway or a sluice gate is an example of steady RVF. A 

surge moving up a canal Figure and a bore traveling up a river are examples of unsteady RVF. 

ii. Spatially varied flow: 

Varied flow classified as GVF and RVF assumes that no flow is externally added to or taken 

out of the canal system. The volume of water in a known time interval is conserved in the 

channel system. In steady-varied flow the discharge is constant at all sections. However, if 

sonic flow is added to or abstracted from the system the resulting varied flow is known as a 

spatially varied flow (SVF).SVF can be steady or unsteady. In the steady SVF the discharge 

while being steady-varies along the channel length. The flow over a side weir is an example of 

steady SVF The production of surface runoff due to rainfall, known as overland flow, is a 

typical example of unsteady SVF. 

 

 

 

 

 

 

 

 

 



 

 

Classifications:  

Thus open channel flows are classified for purposes of identification and analysis as follows: 

 

d. Based on force due to gravity (F r): Froude’s number: 

Froude’s number: It is defined as square root of the ratio of inertial force of a flowing liquid to 

gravitational force. Mathematically, it is expressed as 
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  F g = Force due to gravity  
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Based on Froude’s number the following flows are classified as 

(i) Critical flow 

(ii) Sub critical flow 

(iii) Super critical flow 

i. Critical flow: A flow is said to be critical, if froude’s number equal to one 

  F r = 1 (critical flow) 

ii. Sub critical flow: A flow is said to be critical, if froude’s number less than one 

  F r< 1 ( sub critical flow) 

iii. Super critical flow: A flow is said to be critical, if froude’s number more than 

  F r> 1 (super critical flow) 

  



 

 

 

Based on viscous force: Reynolds number:  

 Reynolds number: It is the ratio of inertial force of liquid to the viscous force. 

 Based on Reynolds number flows are classified as 

  (i) Laminar flow 

  (ii) Turbulent flow 

  (iii) Transition flow 

i. Laminar flow: It is very smooth paths, parallel bands and without intersection 

of stream lines. 

ii. Turbulent flow: It is irregular paths; irregular bands and stream lines are 

intersected. 

iii. Transit flow: The combination of laminar turbulent flow is termed as transit 

flow. 

 

e. Based on density:  

i. Homogenous flow: The density of a liquid is same throughout length of 

channel. 

ii. Stratified flow: The density id different at different sections. 

 

f. Based on coordinate system: 

i. 1 D flow 

ii. 2 D flow 

iii. 3 D flow 

 

  



 

 

 

Geometrical parameters in open channel flow: 

 Depth of channel: The perpendicular distance between free surface and channel bed. 

 Depth of flow: The vertical distance from free water surface to the channel bed. 

 

Fig Longitudinal section 

 Where, D = Depth of channel, y = depth of flow and θ = bed slope 

y

D
=cos  

If θ = 0, y = D 

 

Fig Channel cross-sectional area 

Let b be the bottom width T be the top width; and y is depth of flow. 

Hydraulic radius of channel is taken as R = A/P 

Hydraulic depth is D = A/T 

Section factor Z c= DA  here, A is wetted area and P is wetted perimeter. 

  



 

a. Rectangular cross section: 

Let B, y and θ be the bottom width, depth of the flow and bed slope or longitudinal slope 

as in in fig. 

 

Fig Rectangular section 

S.No Parameters  formulae 

1 Wetted area (A) = By 

2 Wetted perimeter (P) = B+2y 

3 Hydraulic radius ( R= A / P ) = 
)2( yB
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+
 

4 Hydraulic depth (D = A / T ) = y
B
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5 Section factor (Z= DA ) = By y  

 

b. Triangular cross section:  

Let T, y, 1V: nH and θ be the bottom width, depth of the flow, side slope and bed slope or 

longitudinal slope as in in fig. 

  



S.No Parameters  formulae 

1 Wetted area (A) = 
222

2

1

2

1
nynyny =+  

2 Wetted perimeter (P) = 2y
21 n+  

3 Hydraulic radius ( R= A / P ) = 
2

2

12 ny

ny

+
 

4 Hydraulic depth (D = A / T ) = 2/
2

2

y
ny

ny
=  

5 Section factor (Z= DA ) = 
2

2 y
ny  

 

c. Trapezoidal cross section:  

Let T, y, 1V: nH and θ be the bottom width, depth of the flow, side slope and bed slope or 

longitudinal slope as in fig. 

 

 

S.No Parameters  formulae 

1 Wetted area (A) = 
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d. Circular cross section:  

Let r, θ be the radius and angle made from centre to the free surface as shown in figure 

If θ <180˚ 

 

Fig Circular cross section 

  Wetted area = Sector area ADBC - ∆le area ACB 
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If θ >180˚ 

 

 

 

 

 

  

A 

C 

B 

D 

 
  A 

B 

C 

D 



 

Wetted area = Sector area ADBC + ∆le area ACB 

  = )
2

90cos()
2

90sin(2
2

1

2

2 
−−+ rr

r
 

  = 


sin
2

1

2

2
2

r
r

+  

  Wetted area = )sin(
2

2
2

 r
r

+  

  Wetted perimeter (P) = r θ 

Velocity distribution: 

The presence of corners and boundaries in an open channel causes the velocity vectors of the 

flow to have components not only in the longitudinal and lateral direction but also in normal 

direction to the flow. In a macro-analysis, one is concerned only with the major component, 

viz., the longitudinal component, y,. The other two components being small are ignored and v is 

designated as y. The distribution of y in a channel is dependent on the geometry of the channel. 

Figure 1.2(a) and (b) show isovels (contours of equal velocity) of y for a natural and rectangular 

channel respectively. The influence of the channel geometry is apparent. The velocity V is zero 

at the solid boundaries and gradually increases with distance from the boundary. The 

maximum velocity of the cross-section occurs at a certain distance below the free surface. This 

dip of the maximum velocity point, giving surface velocities which are less than the maximum 

velocity, is due to secondary currents and is a function of the aspect ratio (ratio of depth to 

width) of the channel. Thus for a deep narrow channel, the location of the maximum velocity 

point will be much lower from the water surface than for a wider channel of the same depth. 

This characteristic location of the maximum velocity point below the surface has nothing to do 

with the wind shear on the free surface. 

 

Fig Velocity distribution in natural channel 



 

Fig Typical velocity profile for rectangular channel Fig rectangular channel cross-section 

 

A typical velocity profile at a section in a plane normal to the direction of flow is presented in 

Fig. 1.2(c). The profile can be roughly described by a logarithmic distribution or a power-law 

distribution up to the maximum velocity point (Section 3.7). 

 

Field observations in rivers and canals have shown that the average velocity at any vertical v, 

occurs at a level of 0.6 y0 from the free surface, where yo = depth of flow. 

 

 Further, it is found that 

2
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In which y0, = velocity at a depth of 0.2 yo from the free surface, and = velocity at a depth of 

0.8 yo from the free surface. This property of the velocity distribution is commonly used in 

stream-gauging practice to determine the discharge using the 

area-velocity method.  

 

 

sav KvV =  

 

 

The surface velocity y, is related to the average velocity m as where, k = a coefficient with a 

value between 0.8 and 0.95. The proper value of k depends on the channel section and has to be 

determined by field calibrations. Knowing k, one can estimate the average velocity in an open 

channel by using floats and other surface velocity measuring devices. 



 

Velocity distribution coefficients: 

The velocity distribution in open channels is not uniform. The non-uniform distribution in open 

channel flow affects the computation of velocity head (KE head).The actual velocity head is 

more than the computed velocity head. 

The actual velocity head may be expressed as K.E   = 
g

V

2

2

 α is known as Kinetic energy 

coefficient or Coriolis Effect.it been estimated by the experiments that α varies from 1.03 to 

1.36 for a fairly straight prismatic channel. The value is generally higher for small channels and 

lower for large rivers of greater depths. This non-uniform velocity distribution also affects the 

computation of momentum in open channel flow. Actual momentum of liquid passing through 

channel section per unit time is expressed by 

M = )(
g

wQV
  

 Where, β is the momentum coefficient or Boussinesq coefficient.  

It is   found that the value of β varies from 1.01 to 1.12 for fairly straight prismatic channel. The 

velocity distribution coefficient α and β is slightly greater than the unity which is the limiting 

velocity for strictly uniform velocity distribution across the channel section. For channels of 

regular cross section and fairly straight alignment the effect on non-uniform velocity 

distribution in both velocity and momentum is small. Therefore, in such channels α and βare 

assumed to be unity. In the case channel of complex cross section, the values for both the 

coefficients may be higher, i.e., α and β may go upto 1.6 and 1.2 respectively. The values of the 

coefficients may be close to 2 in places such as upstream from weirs, in the vicinity of 

obstructions or near pronounced irregularities in alignment. For a given channel section and 

velocity distribution, α is much more sensitive to variation in velocity than β. 

  



Determination of equation of energy coefficient (α): 

 Let c be the elementary area of the whole cross sectional area A of the channel and w 

is the specific weight of liquid flowing in a channel. The weight of water passing through ∆A 

with velocity v is w (∆A v). 
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 Now, taking the whole area A, the mean velocity V, the corrected velocity head
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Which is general equation of α. If channel is rectangular, dA = B dy, A = Byo 
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Determination of equation of momentum coefficient (β): 

 Momentum passing with velocity v through the elemental area dA = vvA
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 Based on the momentum principle the actual momentum of flowing liquid  
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 Equating both equations 
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 If the channel is rectangular dA = B dy, A = By0 
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UNIT -2 

UNIFORM FLOW 

 
Uniform flow: 

Uniform flow relates to a flow condition over a certain length or reaches of a stream 

and can occur only during steady flow conditions. Uniform flow may be also defined as 

the flow occurring in a channel in which equilibrium has been reached between 

gravitational force and shear force. Many irrigation and drainage canals and other 

artificial channels are designed to carry water at uniform depth and cross section all 

along their lengths. Natural channels as rivers and creeks are seldom of uniform shape. 

The design discharge is set by considerations of acceptable risk and frequency analysis, 

whereas the channel slope and the cross-sectional shape are determined by 

topography, and soil and land conditions. 

 
Momentum equation: 

 
 



 
 

The Chezy’s equation: 

 

 



 
 

 

 

 
 

 

  



The Manning’s equation: 
 

A very many studies have been made of the evaluation of C for different natural and 
manmade channels. These have resulted in today most practicing engineers use some 
form of this relationship to give C:  

 
 
 
 
 
 

This is known as Manning’s formula and the n as Manning’s n. Substituting equation 

1.9 in to 1.10 gives velocity of uniform flow: 
 

Or in terms of discharge  
 
 
 
 
 
 

 
Note: 
 

Several other names have been associated with the derivation of this formula – or ones 

similar and consequently in some countries the same equation is named after one of 
these people. Some of these names are; Strickler, Gauckler, Kutter, Gauguillet and 

Hagen. 
 

The Manning’s n is also numerically identical to the Kutter n. 
 

The Manning equation has the great benefits that it is simple, accurate and now due to 
it long extensive practical use; there exists a wealth of publicly available values of n for 
a very wide range of channels. 

 
Below is a table of a few typical values of Manning’s n 

 

Table 2.1 Manning’s roughness coefficient for various channels 



 
 
 
Conveyance 
 

Channel conveyance, K , is a measure of the carrying capacity of a channel. The K is 
really an agglomeration of several terms in the Chezy’s or Manning's equation:  

 
 
 
 
 
 
 

So  
 
 
 
 
 
 
 

Use of conveyance may be made when calculating discharge and stage in compound 
channels and also calculating the energy and momentum coefficients in this situation. 

 
 Best Hydraulic Cross- Section:  

We often want to know the minimum area A for a given flow Q, slope S0 and 
roughness coefficient n. 

 
This is known as the best hydraulic cross section 

 
The quantity ARh

2/3 in Manning’s’ equation is called the section factor 
Writing the Manning equation with Rh = A/P, we get  

 
 
 
 
 
 

Rearranged we get 
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Most economic channel section: 
 

It is known that the conveyance of a channel section increases with increases in 

hydraulic radius or with decrease in the wetted perimeter. From hydraulics viewpoint, 

therefore, the channel section having the least wetted perimeter for a given area has 

the maximum conveyance; such a section is known as the best hydraulic section. 

 

Of all the possible open channel sections, the semicircular shape has the least amount 

of perimeter for a given area. Relationship between various geometric elements to form 

an efficient section can be obtained as follows. 

 

 

Rectangular channel section: 

 

 

 

 

 

 

 

 

 

Triangular channel section: 
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Trapezoidalchannel section: 
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Circular channel section: 
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Problems on uniform flow: 
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UNIT 3 

SPECIFIC ENERGY AND CRITICAL DEPTH 

 

Introduction: 

The concept of specific energy introduced by Bakhmeteff is very useful in defining critical water 

depth and in the analysis of open channel flow. It may be noted that while the total energy in a 

real fluid flow always decreases in the downstream direction. The specific energy is constant for 

a uniform flow and can either decrease or increase in a varied flow, since the elevation of the bed 

of the channel relative to the elevation of the energy line, determines the specific energy. 

 

If the datum coincides with the channel bed at the cross-section, the resulting expression is 

known as specific energy and is denoted by E. Thus, specific energy is the energy at a cross-

section of an open channel flow with respect to the channel bed. 

The total energy of a channel flow referred to datum is given by, 
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Specific energy at a cross-section is, 
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Here, cross-sectional area A depends on water depth y and can be defined as, A = A(y). 

Examining the Eq. (5.2) show us that, there is a functional relation between the three 

variables as, 

0),,( =QyEf  

In order to examine the functional relationship on the plane, two cases are introduced. 

 

1. Q = Constant = Q1 → E = f (y, Q1). 

 

Variation of the specific energy with the water depth at a cross-section for a given discharge 
is Q1. 

2. E = Constant = E1 → E1 = f (y, Q) 

 

Variation of the discharge with the water depth at across-section for a given specific energy 
is E1. 

  



38 
 

Specific energy curve: 

 The specific energy equation can be written as 

2

22

22 gA

Q
y

g

V
yE +=+=    Here 

A

Q
V =  

The equation shows that for a given discharge Q and channel section, Specific energy E is 

function of depth only. When depth of flow y is plotted against specific energy E, Specific 

energy diagram or curve is obtained. 

 

 

 

 

 

 

 

 

Fig3.1: Specific energy curve 

Characteristics of specific energy curve: 

For a channel of known geometry, E = f (y, Q). Keeping Q = constant = Q1, the variation of 

E with y is represented by a cubic parabola. (Fig.3.1). It is seen that there are two positive 

roots for the equation E indicating that any particular discharge Q1 can be passed in a given 

channel at two depths and still maintain the same specific energy E1. The depths of flow can 

be either PR = y1 or PR’ = y’1. These two possible depths having the same specific energy 

are known as alternate depths. In Fig. (3.1), a line (OS) drawn such that E = y (i.e. at 45
0
 to 

the abscissa) is the asymptote of the upper limb of the specific energy curve.  

It may be noticed that the intercept P’R’ and P’R represents the velocity head. Of the two 

alternate depths, one (PR = y1) is smaller and has a large velocity head while the other (PR’= 

y’1) has a larger depth and consequently a smaller velocity head. For a given Q, as the 

specific energy is increased the difference between the two alternate depths increases. On the 

other hand, if E is decreased, the difference (y’1 – y1) will decrease and a certain value E = 

Ec, the two depths will merge with each other (point C in Fig. 3.1). No value for y can be 

obtained when E < Ec, denoting that the flow under the given conditions is not possible in 

this region. The condition of minimum specific energy is known as the critical flow condition 

and the corresponding depth yc is known as critical depth.  
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The specific energy diagram can be plotted for discharges Q = Qi = constant (i = 1, 2, 3,…) 

as in Fig. (3.2). as the discharges increase, the specific energy curves moves right since the 

specific energy increases with the discharge. 

 

 

 

 

 

 

 

 

 

Figure 3.2 Specific energy for varying discharges 

Conditions of critical flow: 

 The condition of minimum specific energy at a given value of Q may be obtained as   
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 AS Q is constant, differentiating E with respect to depth y and equating to zero for 

 minimum, we get  
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Fig3.1: Sectional view 

 Consider a channel of top width T and cross sectional area A as shown in fig.3.2.Let dy 

 be the elemental depth. And y is the depth of flow. 
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 The above mathematical expression is condition for minimum specific energy. 

 Equation may be simplified as  
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 The above equation shows velocity head is half of the hydraulic depth D, which is one 

 criteria of critical flow condition. 

 Further above equation may be simplified and written as  
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 By the definition 
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 is the equation of Froude’s number, 
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 i.e., Fr= 1 hence flow is critical  

 it may be concluded that at minimum specific energy for a given discharge for a given 

 discharge flow condition is always critical state, so the mathematical representation  

 1
3

2

=
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TQ
is the condition of critical flow of the channel. 

Maximum discharge at a given specific energy: 

The equation is  

2

2

2gA

Q
yE +=  

)(2 2 yEgAQ −=  

)(2 yEAgQ −=  

 The above equation may be differential with respect to y keeping E to be constant and Q 

 to be maximum,  
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Critical flow computations: 

Rectangular Cross-Section: 

 

 

 

 

 

 

 

 

Figure 3.2 

 

Analytically general expression for critical flow condition of channel is 
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In rectangular channel A = B yc, T = B     q
B

Q
=  discharge per unit width. 

The equation becomes  
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i.e. explicit or direct solution of critical depth in rectangular channel exists. To find the 

corresponding specific energy at critical depth. 
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Triangular channel: General condition is  
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 i.e. explicit or direct solution of critical depth in triangular channel exists. To find the 

 corresponding specific energy at critical depth. 
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Trapezoidal channel: General condition is  
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Therefore, the above equation doesn’t exist direct solution. So it is implicit equation. 

The above equation can be expressed as 
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The above equation is converted into Non-dimensional form. Here 
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Non-dimensional discharge. And non-dimensional discharge is 
B

y
Y c=  

                                
( )
( )nY

YnY

gB

Q

21

)1(
3

5

2

+

+
=   

1
3

2

=
gA

TQ



45 
 

Example 3.1: Calculate the critical depth and the corresponding specific energy for a 

discharge of 5.0 m3/s in the following channels. 

a) Rectangular channel, B = 2.0 m. 

b) Triangular channel, n = 0.5. 

c) Trapezoidal channel, B = 2.0 m, n = 1.5. 

 

Sol:   

    Rectangular channel, B = 2.0 m. Q = 5.0 m3/s 

               Critical depth for rectangular channel  

q = 
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 Trapezoidal channel, B = 2.0 m, n = 1.5. 
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The concepts of specific energy and critical energy are useful in the analysis of transition 

problems. Transitions in rectangular channels are presented here. The principles are equally 

applicable to channels of any shape and other types of transitions. 

 

Channel with a Hump 

a) Subcritical Flow 

Consider a horizontal, frictionless rectangular channel of width B carrying discharge  Q 
at depth y1. 

Let the flow be subcritical. At a section 2 (Fig. 5.11) a smooth hump of height ∆Z is built on 

the floor. Since there are no energy losses between sections 1 and 2, construction of a hump 

causes the specific energy at section to decrease by ∆Z. Thus the specific energies at sections 

1 and 2 are, 
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Fig 3.5 Channel with a hump 

Since the flow is subcritical, the water surface will drop due to a decrease in the specific 

energy. In Fig. (3.6), the water surface which was at Pat section 1 will come down to point 

Rat section 2. The depth y2 will be given by, 
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Figure 3.6. Specific energy diagram for Fig. (3.5) 

It is easy to see from Fig. (3.6) that as the value of ∆Z is increased, the depth at section 2, y2, 

will decrease. The minimum depth is reached when the point R coincides with C, the critical 

depth. At this point the hump height will be maximum, ∆Z max, y2 = yc = critical depth, and 

E2 = Ec = minimum energy for the flowing discharge Q. The condition at ∆Zmax is given by 

the relation, 
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The question may arise as to what happens when Z > Zmax. From Fig. (3.6) it is seen that the 

flow is not possible with the given conditions (given discharge). The upstream depth has to 

increase to cause and increase in the specific energy at section 1. If this modified depth is 

represented by y1`, 
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At section 2 the flow will continue at the minimum specific energy level, i.e. at the critical 
condition. At this condition, y2 = yc, and 
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Recollecting the various sequences, when 0 < ∆Z < ∆Zmax the upstream water level remains 

stationary at y1 while the depth of flow at section 2 decreases with ∆Z reaching a minimum 

value of yc at ∆Z = ∆Zmax. (Fig.3.6).With further increase in the value of ∆Z, i.e. for ∆Z > 

∆Zmax, y1 will change to y1` while y2 will continue to remain yc. 

The variation of y1 and y2 with Z in the subcritical regime can be clearly seen in Fig. 

 

 

   Fig 3.7 Variation of y1 and y2 in subcritical flow over a hump 

Super critical flow: 

If y1 is in the supercritical flow regime, Fig. (3.6) shows that the depth of flow increases due 

to the reduction of specific energy. In Fig. (3.6) point P` corresponds to y1 and point R` to 

depth at the section 2. Up to the critical depth, y2 increases to reach yc at Z =∆Zmax. For ∆Z > 

∆Zmax, the depth over the hump y2 = yc will remain constant and the upstream depth y1 will 

change. It will decrease to have a higher specific energy E1`byincreasing velocity V1. The 

variation of the depths y1 and y2 with Z in the supercritical flow is shown in Fig. (5.15). 

 

Figure 3.8 Variation of y1 and y2 in supercritical flow over a hump 
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Transition with a Change in Width: 

Subcritical Flow in a Width Constriction 

 

Consider a frictionless horizontal channel of width B1 carrying a discharge Q at a depth y1 as 

in Fig. (5.17). at a section 2 channel width has been constricted to B2 by a smooth transition. 

Since there are no losses involved and since the bed elevations at sections 1 and 2 are the 

same, the specific energy at section is equal to the specific energy at section 2. 

 

It is convenient to analyze the flow in terms of the discharge intensity q = Q/B. At section 1, 

q1 = Q/B1 and at section 2, q2 = Q/B2. Since B2 < B1, q2 > q1. In the specific energy diagram 

(Fig. 5.19) drawn with the discharge intensity, point P on the curve q1 corresponds to depth 

y1 and specific energy E1. Since at section 2, E2 = E1 and q = q2, point P will move vertically 

downward to point R on the curve q2 to reach the depth y2. Thus, in subcritical flow the depth 

is y2 < y1. If B2 is made smaller, then q2 will increase and y2 will decrease. The limit of the 

contracted width B2 = B2min is reached when corresponding to E1, the discharge intensity q2 = 

q2max, i.e. the maximum discharge intensity for a given specific energy (critical flow 

condition) will prevail. 

 

 

 

 

 

 

 

 

 

Figure 3.9 Specific energy diagram for Fig.  
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If B2 < B2min, the discharge intensity q2 will be larger than qmax, the maximum discharge 

intensity consistent E1. The flow will not, therefore, be possible with the given upstream 

conditions. The upstream depth will have to increase to y1`. The new specific energy will be 

formed which will be sufficient to cause critical flow at section 2. It may be noted that the 

new critical depth at section 2 for a rectangular channel is, 
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Since B2 < B2min, yc2 will be larger than ycm, yc2 > ycm. Thus even though critical flow 

prevails for all B2 < B2min, the depth section 2 is not constant as in the hump case but 

increases as y1` and hence E1` rises. The variation of y1, y2 and E with B2/B1 is shown 

schematically in Fig. (5.20). 
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Fig Variation of y1 and y2 in subcritical flow in a width constriction 

 

 

Supercritical Flow in a Width Constriction: 
 

If the upstream depth y1 is in the supercritical flow regime, a reduction of the flow width and 

hence an increase in the discharge intensity cause a rise in depth y2. In Fig. (5.19), point P` 

corresponds to y1 and point R` to y2. As the width B2 is decreased, R` moves up till it 

becomes critical at B2 = B2min. Any further reduction in B2 causes the upstream depth to 

decrease to y1` so that E1 rises to E1`. At section2, critical depth yc` corresponding to the new 

specific energy E1` will prevail. The variation of y1, y2 and E with B2/B1 in supercritical flow 

regime is indicated in Fig. (5.21). 

 

 

 

 

 

 

Fig Variation of y1 and y2 in supercritical flow in a width constriction 
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In the case of a channel with a hump, and also in the case of a width constriction, it is 

observed that the upstream water surface elevation is not affected by the conditions at section 

2 till a critical stage is first achieved. Thus in the case of a hump for all Z ≤ Zmax, the 

upstream water depth is constant and for all Z > Zmax the upstream depth is different from y1. 

Similarly, in the case of the width constriction, for B2 ≥ B2min, the upstream depth y1 is 

constant; while for all B2 < B2min, the upstream depth undergoes a change. This onset of 

critical condition at section 2 is a prerequisite to choking. Thus all cases with Z > Zmax or B2 

< B2min are known as choked conditions. Obviously, choked conditions are undesirable and 

need to be watched in the design of culverts and other surface drainage features involving 

channel transitions. 

Example3.1:  

 In rectangular channel carries the discharge of 5m3/s and width 2m with a depth of 

 flow 1.8m A hump is constricted of height 0.5m calculate new upstream depth of 

 flow if necessary. 
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Example3.2: A rectangular channel is 3m wide and carries a discharge of 3.3m3/s at a depth 

of 0.9m. A smooth contraction of the channel width proposed at a section. Find the smallest 

contracted width that will not affect the upstream flow conditions. Neglect energy losses in 

the transitions. 

Let suffixes 1 & 2 refer to the section upstream and downstream of the transition 

At section 1-1: B1 = 3.0m y1 = 0.9m and Q = 3.3m3/s 
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The flow in the channel is in subcritical mode and the water surface elevation will drop in the 

contracted section. 

Specific energy m
g

V
yE 976.0

81.9.2

222.1
9.0

2

22

1
11 =+=+=

 

At the maximum possible contraction of width that will not affect the upstream flow 

condition the critical flow will prevail at the contracted section. Thus 22 cyy =  
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UNIT 4 

GRADUALLY VARIED FLOW 

 

A steady non-uniform flow in a prismatic channel with gradual changes in its water surface 

elevation is termed as gradually varied flow (GVF). The backwater produced by a dam or weir 

across a river and the drawdown produced at a sudden drop in a channel are few typical 

examples of GVF. In a GVF, the velocity varies along the channel and consequently the bed 

slope, water surface slope, and energy slope will all differ from each other.  

Regions of high curvature are excluded in the analysis of this flow. 

 

The two basic assumptions involved in the analysis of GVF are the following: 
 

1. The pressure distribution at any section is assumed to be hydrostatic. This 

follows from the definition of the flow to have a gradually-varied water surface. As 

gradual changes in the surface curvature give rise to negligible normal accelerations, the 

departure from the hydrostatic pressure distribution is negligible. The exclusion of the 

region of high curvature from the analysis of GVF, as indicated earlier, is only to meet 

this requirement. 

2. The resistance to flow at any depth is assumed to be given by the corresponding uniform 

flow equation, such as the Manning’s formula, with the condition that the slope term to 

be used in the equation is the energy slope and not the bed slope. Thus, if in a GVF the 

depth of flow at any section is y, the energy slope S, is given by 

 
 

The depth of flow changes along its length of the channel. 

 Gradually varied flow may be caused due to various factors. 

 Change in the shape of cross section. The channel reaches at downstream of sluice gate. 

 Presence of obstructions (weirs & dams)  

 Change in shape over the length. 

 Change in frictional forces at channel bottom. 

 The gradually varied flow concept mainly concerned with the predicting or estimating 

 water surface curves or profiles and computing their length. 
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Fig 4.1 Definition sketch of gradually varied flow 

 

The dynamic equation of gradually varied flow: 

a. Flow is steady  

b. Channel is prismatic 

c. Kinetic energy coefficient is unity (α = 1) 

d. Pressure distribution is hydrostatic. 

e. Stream lines are straight and practically parallel with each other. 

f. Frictional forces are same throughout channel reach. 

g. Chezy’s & manning’s roughness coefficients are commonly applicable to the 

GVF  channel. 

h. Bed slope is mild. 

 Consider a profile of gradually varied flow in the elementary length dx. And controlled 

 volume is considered in between section (1)-(1) & (2)-(2). 

 Let Z1, Z2 be the datum heads at section (1)-(1) & (2)-(2). 

 Let y1, y2 be the depths of flow at section (1)-(1) & (2)-(2). 

 V1, V2 be the velocities at section (1)-(1) & (2)-(2). 

 Sb, Se (or) Sf   is the slope of channel bottom and slope of energy line respectively. 

 From Bernoulli’s equation 

  The total energy head of general form can be written as 
g

V
yZH

2

2

++=  

  Differentiate H w.r.t elementary length dx. 
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dx

g

V
d

dx

dy

dx

dZ

dx

dH














++=
2

2

 

 

 Here, 
dx

dH
 is rate of change of total energy head w.r.t to elementary length of the 

channel. If length increases total energy head will decrease 

  Therefore, 
dx

dH
 is taken as (-) ve. 

  
dx

dH
 is the slope of energy line (or) frictional slope. 

  Therefore, fe sors
dx

dH
)(=  

  Here, 
dx

dZ
 is the rate of change of datum head w.r.t elementary length of the  

  channel. 

  If x increases along with flow datum head will decrease 

Therefore, 
dx

dZ
 is taken as (-) ve. 

bs
dx

dZ
=  

 The above parameters are substituted in total energy equation 
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      …………. Eq (4.1) 

 The above equation is general form of dynamic equation of gradually varied flow. 

Consider a prismatic channel of flow steady and top width T, depth of flow y as shown in figure. 

Elementary area TdydA =  
dy

dA
T =  
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Classifications of Gradually varied flow profiles: 

 

 The various surface profiles may be classified into twelve different types according to the 

 nature of the channel slope and the zone in which the flow surface lies. 

 

M1- Profile:  

  

 This is a backwater curve and it lies in zone-1 of mild channel. This profile occurs where 

 the D/S end of a long mild channel is submerged in a reservoir to a depth greater than 

 normal depth of flow in the channel. The example may be profile behind a dam in a 

 natural river or a profile in a canal joining two reservoirs. 

 

Fig 4.2 M1- Profile: 

 

 

 

 

M2-Profile:  
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 This is a draw down curve and it lies in Zone-II of a mild channel. If the depth of 

 submergence on the D/S end is greater than ny  then only that much profile will be 

 formed, which lies above the water surface at the D/S end. For example, profile at D/S 

 end of a mild channel having free over fall. 

 

 
 

Fig 4.3 M2-Profile 

 

M3-Profile:  

 

 This profile is a backwater curve which lies in Zone III of a mild channel. It starts from 

 the upstream channel bottom and terminates with a hydraulic jump at the D/S end. It 

 occurs when a supercritical flow enters a mild channel. For example: Profile in a stream 

 below a sluice gate and profile after the change in bottom slope from steep to mild. 

 
Fig4.4 M3-Profile 

S1-Profile:  
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 This is a backwater curve, which lies in Zone-1 of a steep channel. It begins with a jump 

 at the U/S and becomes tangent to the horizontal pool level at the D/S end. For example: 

 Profiles of flow behind a dam in a steep channel or in a steep canal emptying into a pool 

 of high elevation. 

 

Fig4.5 S1-Profile 

 

S2-Profile: 

 This is a draw down curve which lies in Zone-2 of a steep channel. It is usually very short 

 and rather like a transition between a hydraulic drop and uniform flow. Since it starts U/S 

 with a vertical slope at the critical depth and is tangent to the normal- depth line at the 

 D/S end. For example, profiles formed on the D/S side of an enlargement of channel 

 section and on the steep slope side as the channel slope changes from steep to steeper. 

 

Fig4.6 S2-Profile 
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S3-Profile: 

 This is a backwater curve, which lies in Zone-III of a steep channel. For example, profile 

 on steep slope as the channel slope changes from steep to milder steep and that below a 

 sluice with the depth of the entering flow less than the normal depth on a steep slope. 

 
Fig 4.7 S3-Profile 

 

 

C-Profiles: 

  

 Since, S0 =Sc and cn yy = , these profiles represent the transition condition between  

 M and S profiles. For a wide rectangular channel if Manning’s formula is used, C1 and C3 

 profiles are  used but when Chezy’s formula is used, both these profiles are horizontal   

 lines, 

     since,     cn yforyS
dx

dy
== 0 . 

C1-Profile:  

 This is a backwater curve, which lies in Zone-I of a critical sloped channel. For example, 

 profile formed on the critical slope side of the channel having a break in the bottom slope 

 in which the critical slope changes to a mild slope. 
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Fig 4.8 C1-Profile 

C3-Profile:  

 This is a back water curve which lies in Zone-III of a critical sloped channel. The U/S 

 end of the curve starts theoretically from the channel bottom. At the D/S end the profile 

 terminates with a hydraulic jump occurs where a supercritical flow enters a critical sloped 

 channel. For example, Profile in a stream below a sluice gate provided in a critical sloped 

 channel. 

 

Fig 4.8 C3-Profile 

 

H2-Profile: 

   

 It is a drawdown curve, which lies in Zone-II of a horizontal channel. The U/S end of the 

 H2 profile tends to approach horizontal line tangentially while the D/S end of the profile 

 tends to meet the C.D.L perpendicularly, thus ending in a hydraulic drop. For example, 

 profile at D/S end of a horizontal channel having a free over fall. 
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Fig 4.9 H2-Profile 

 

 

 

H3-Profile:  

 

 It is a backwater curve which lies in Zone-III of a horizontal channel. The U/S end of H3 

 profile starts theoretically from the channel bottom while the D/S end of the profile 

 terminates with a hydraulic jump occurs when a supercritical flow enters a horizontal 

 channel. For example, profile in a stream below a sluicegate provided in a horizontal 

 channel. 

 
Fig 4.10 H2-Profile 

 

A2-Profile:  

 It is a draw down curve which lies in Zone-2 of an adverse sloped channel. At the U/S 

 end A2- profile tends to approach a horizontal line tangentially, while the D/S end tends 

 to meet the C.D.L. perpendicularly, ending in a hydraulic drop. For example, profile at 

 the D/S end of an adverse sloped channel having a freely discharging weir. 
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Fig 4.11 A2-Profile 

 

A3-Profile:  

  

 It is a backwater curve which lies in Zone-3 of an adverse sloped channel. As such, the 

 U/S end of A3 profile starts theoretically from the channel bottom while the D/S end of 

 the profile terminates with a hydraulic jump occurs when a super critical flow enters an 

 adverse sloped channel. For example, profile in a stream below a sluice gate provided in 

 an adverse sloped channel. 

 

Fig 4.12 A3-Profile 
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Classifications of surface profile for gradually varied flow:  

Channel type dx

dy
 Depth relation Type of flow  Type of profile 

 

Mild  

(+)ve cn yyy   Subcritical M1 Backwater 

(-)ve cn yyy   Subcritical M2Drawdown 

(+)ve yyy cn   Super critical M3 Backwater 

Steep 

(+)ve nc yyy   Subcritical S1 Backwater 

(-)ve nc yyy   Supercritical S2Drawdown 

(+)ve yyy nc   Super critical S3 Backwater 

Critical 
(+)ve nc yyy =  Subcritical C1 Backwater 

(+)ve yyy nc =  Super critical C3 Backwater 

Horizontal 
(-)ve = nc yyy &  Sub critical  H2Drawdown 

(+)ve = nc yyy &  Super critical H3 Backwater 

Adverse 
(-)ve yisimaginaryyy nc &  Sub critical  A2Drawdown 

(+)ve yisimaginaryyy nc &  Super critical A3 Backwater 
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Example 4.1:  

 A rectangular channel of 5m wide carries  water at a depth 1.5m, Sb = 10-4, N= 

 0.016and ends in a canal drop. The depth upstream at some upstream point is 1.4m. Find 

 the type of profile. 

Sol:                
2/13/21

bSR
N

V =  
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 So profile is zone 2 with mild slope. Thus, M2 type profile will occur 
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Example 4.2: The normal depth in a trapezoidal channel of bottom width of 15m, side slope 1H: 

1V is 1.5m. The slope is 10-4 and N = 0.02.A weir constructed at downstream raises the water 

depth 3m immediately upstream of weir. Predict the type of profile. 

Sol;  
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      So flow is subcritical, i.e. bed slope will be mild  

     Again cn yyy  .   Therefore, profile is M1 type. 
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Direct step method: 

  This method was first suggested by charmonskii in 1914. The method is simpler 

and suitable for field engineers. It gives an approximate profile if done by hand with calculator 

taking steps i.e. ∆x a bit bigger. But if a good result is expected, computer program may be 

written taking ∆x very small. 

  From the equation  fb SS
dx

dE
−=  

Writing in finite difference for, fb SS
x

E
−=




 where fS  is the average friction slope calculated 

at 1−nnandxx  section. 

fb SS

E
x

−


=  

And finally    

)
2

(

)(
12

12
12

ff

b

SS
S

EE
xxx

+
−

−
=−=  

Steps of computation: 

1. From the given value of Q and other channel parameters like channel section N,

bS   calculate yn and yc. Plot it above channel bottom as shown in figure. Let 

the profile type in  M1 type. 

2. Value of yn and yc will determine the type of profile. Let it be M1 type profile. 

3. Let y1 be initial depth at control section. Calculated value of yn and yc indicate the 

zone of  profile and exact type of profile. (Say M1) 

4. Approximate surface profile is drawn where it occurs. 

5. Calculation may be started step by step. 

6. The value of y1 is known. 

7. Since M1 is asymptotic to NDL, calculation of L is made between known depths 

y1 and  1.01 yn (i.e. 1% above yn). 

8. Total length L is the summation of  ∆x1, ∆x2, ∆x3, ∆x4,………∆xn-1 

9. From y1 at section 1, compute V1, 
1

,,
2

1

2

1
fSE

g

V
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10. 
Assume depth y2 at section 2 at a distance ∆x1. Here for M1 profile y2 at distance 

∆x1 is  smaller than y1 again calculate V2, 22

2

2 ,,
2

fSE
g

V

 

Apply equation 
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=−=          to calculate
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Assume another value of y3 again calculate V3, 33
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Apply equation 
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=−=          to calculate

   

∆x2 

Thus assumptions of    y4, y5, y6…………….yn =1.01 of normal depth and repeating above steps is 

made to calculate ∆x3, ∆x4, ∆5 … ∆xn-1. 

Now, 1321 ....... −+++= nxxxxL . 

 

Example 4.1: A rectangular channel 8m wide carries a discharge of 11m3/s (manning’s N = 

0.025, bed slope of 0.016).Compute the length of back water profile created by a dam which 

backs up a depth 2m immediately behind the dam by direct step method. Take at least 3 steps to 

compute the profile. 

Compute the normal depth of flow by trial and error method or first get yn by approximate direct 

solution equation. Take this value as the first assumed value for trial and error method.  
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From trial and error method yn = 1.0m L.H.S ≈11m3/s 
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g

q
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As cn yy   slope is mild, so profile is M-profile. The depth profile near the dam is 2.0m > yn  

It is in zone 1 so M1 profile. 
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For computation of the profile length L in three steps depths are assumed as shown in figure at 

dam section. 1.01yn i.e. 1.01m at upstream. M1 is asymptotic to NDL in between 1.8m and 1.5m 

as shown in sketch. Next will to compute ∆x1, ∆x2, ∆x3 corresponding to assumed depths by 

direct step method equation, i.e. 

)
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( 12

12

ff
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−
=

−


=

      

And this computation is tabulated in the below table  

Y 

(m) 

A 

(m2) P(m) R =A/P V=Q/A V2/2g 
E =y+ 

(V2/2g) 

∆E= 

E2-E1 

Sf=(V2N2) 

/R(4/3) Ṡf Sb- Ṡf 

2 16 12 1.333 0.6875 0.012 2.012  0.00020   

1.8 14.4 11.6 1.24 0.764 0.029 1.829 0.183 0.00026 0.00023 0.00137 

1.5 12 11 1.09 0.92 0.043 1.543 0.286 0.00046 0.00036 0.00124 

1.01 8.08 10.02 0.807 1.37 0.097 1.107 0.436 0.00114 0.00079 0.00082 

∆x=∆E/ 

( Sb- Ṡf) 
L (m) 

  

897.207 
133.6 

230.6 

533.007 

 

Therefore, the total length of the profile L = 897.204m 
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Control sections or control points:  

 Control section is defined as a section in which fixed relationship between    

 discharge and depth. 

 Examples are weir, dam, sluice gates and change in slopes. 

 Control sections are classified into two categories  

  (i) Downstream control section (ii) Upstream control section 

 

(i) Downstream control section:  

 Sub critical flow is controlled by the downstream control it is located just in front of the 

 obstruction. (such as weir, dam and etc.) 

(ii) Upstream control section:  

 Super critical flow is controlled by upstream control and it is located just behind the 

 obstruction. (Such as change in slope). 

 

Upstream & Downstream control sections 
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UNIT 5 

RAPIDLY VARIED FLOW 

The most common application of the momentum equation in open channel flow 

deals with the analysis of the hydraulic jump. The rise in water level, which occurs during the 

transformation of the unstable ‘rapid’ or supercritical flow to the stable tranquil” or subcritical 

flow, is called hydraulic jump. Manifesting itself as a standing wave at the place where the 

hydraulic jump occurs. A lot of energy of the flowing liquid is dissipated (mainly into heat 

energy). This hydraulic jump is said to be a dissipater of the surplus energy of the water. Beyond 

the hydraulic jump the water flows with a eater depth. And therefore with a less velocity. 

 

The hydraulic jump lies many practical and useful applications. Among them are the following: 
 

• Reduction of the energy and velocity downstream of a dam or chute in order to minimize 

and control erosion of the channel bed. 

• Raising of the downstream water level in irrigation channels.  

• Acting as a mixing device for the addition and mixing of chemicals in industrial and 

water and wastewater treatment plants. In natural channels the hydraulic jump is also 

used to provide aeration of the water for pollution control purposes. 

However, before dealing with the hydraulic jump in detail, it is necessary to understand the 

principle of the so-called specific energy. We will apply this principle for explaining the 

hydraulic jump phenomenon. 

 

Hydraulic jump features: 

  

The following features are associated with the transition from supercritical to subcritical flow: 

1. Highly turbulent flow with significantly dynamic velocity and pressure components; 

2. Pulsations of both pressure and velocity, and wave development downstream of the jump; 

3. Two-phase flow due to air entrainment; 

4. Erosive pattern due to increased macro-scale vortex development; 

5. Sound generation and energy dissipation as a result of turbulence production. 
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A hydraulic jump thus includes several features by which excess mechanical energy may be 

dissipated into heat. The action of energy dissipation may even be amplified by applying energy 

dissipators. 

Hydraulic jump analysis:  

 For mathematical analysis, momentum equation is considered. Energy equation is not 

taken into consideration as a lot of energy in the jump is lost. By writing the momentum equation 

considering small reach Lj i.e. between two sections 1-1 and 2-2.       

  

               Fig 5.1Definition sketch of momentum equation  

                )(sin 1221 VV
g

wQ
FWPP f −=−+−   

The following assumptions are required for jump analysis. 

1. Length of the jump Lj is small as it is RVF, so force of friction or resistance Ff is small 

and neglected. 

2. Bed slope θ is very small, hence sinθ ≈ 0 thus W sinθ ≈ 0. 

3. Hydrostatic pressures P1 (at 1-1) and P2 (at 2-2) prevail before and after the jump.  

4. Flow is uniform before and after the jump i.e. depth y1 before the jump and depth y2 after 

the jump remain constant. Thus, considering the control volume of liquid between 1-1 

and 2-2, momentum equation with above assumptions, becomes 
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The above term on L.H.S is specific force at section 1-1. It is the summation of force per unit 

weight of water and momentum of the flow passing the channel section per unit time per unit 

weight of water. 

Assume channel is rectangular  
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The above equation is in quadratic form, solving for y2 
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Similarly it is solved for y1   
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Here,   y1 is before the jump  

 y2 is after the jump 

 Fr1 Froude’s no. before the jump > 1 

 Fr2 Froude’s no. after the jump < 1 
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         1

2

y

y
  is called sequent depth ratio for the initial froude’s number  Fr1 in horizontal friction 

 less rectangular channel and is known as Belanger momentum equation. For high value 

 of Fr1 >8 is approximated to be  
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Basic characteristics of the hydraulic jump: 

 Loss of energy in jump:  If E1 and E2 are the specific energies before and after the jump  

then,    
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The belanger momentum equation is     
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Substituting this    
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  From equation we get  

    

21

3

12

21

3

12

21

2

12
12

21

12

2

12
12

2

2

2

1

121212
2121

4

)(

4

)(

4

)(
1)(

4

)()(
)(

))((
.

2

1
.

2
)(

yy

yy
E

yy

yy

yy

yy
yy

yy

yyyy
yy

yy

yyyyyy
yyyyE

−
=

−
=











 +
+−−=

−+
+−−=

−+







 +
+−=

 



78 
 

 

 

 It gives the loss of energy in hydraulic jump in rectangular channel. 

 

Efficiency of the jump:   

 The ratio of specific energy after the jump (E2) to the energy before the jump (E1) is 

 defined as the efficiency of the jump. 

 

 i.e., Efficiency of the jump = E2 / E1 
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Height of the jump:  

 The difference between the depths after and before the jump is the height of the jump. It  

 is denoted by hJ   

           

12 yyhJ −=

   

Types of hydraulic jump: 

 

 Hydraulic jumps on a horizontal bottom can occur in several distinct forms. Based on the 

 Froude number of the supercritical flow directly upstream of the hydraulic jump, several 

 types can be distinguished.  

 It should be noted that the ranges of the Froude number given in Table for the various 

 types of jump are not clear-cut but overlap to a certain extent depending on local 

 conditions. Given the simplicity of channel geometry and the significance in the  design 

 of stilling basins, the classical hydraulic jump received considerable attention during the 

 last sixty years. Of particular interest were: 

 The ratio of sequent depths, which is the flow depths upstream and downstream of the 

 jump, and the length of jump, measured from the toe to some tail water zone. 
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1. Undular jump: 

 Undular jump occurs if Froude’s number at pre-jump in between 1 and 1.7.The water 

 surface shows undulations and energy dissipation is less than 5%. 

 

Fig 5.2 Undular jump: 

 

 

2. Weak jump: 

 Weak jump occurs if Froude’s number at pre-jump in between 1.7 and 2.5. And energy 

 dissipation is varies from 5 to 15%.A series of small rollers develop on the surface of the 

 jump,  but the downstream water surface remains smooth. The velocity throughout is 

 fairly  uniform, and the energy loss is low. 

 

Fig 5.3 Weak jump: 
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3. Oscillating jump: 

 Oscillating jump occurs if Froude’s number at pre-jump in between 2.5 and 4.5. And 

 energy  dissipation is varies from 15 to 45%.There is an oscillating jet entering the jump  

 from  bottom to surface and back again with no periodicity. Each oscillation produces a 

 large  wave of irregular period which, very  commonly in canals, can travel for meters 

 doing  unlimited damage to earthen banks and rip-raps. 

 

 

Fig 5.4 Oscillating jump: 

4. Steady jump:  

 Steady occurs if Froude’s number at pre-jump in between 2.5 and 4.5.The downstream 

 extremity of the surface roller and the point at which the high velocity jet tends to  leave 

 the flow occur at practically the same vertical section. The action and position of this 

 jump are least sensitive to variation in tail water depth. The jump is well-balanced and the 

 performance is at its best. The energy dissipation ranges from 45 to 70%. 

 

Fig 5.5 Steady jump 
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5. Strong jump: 

 Strong jump occurs if Froude’s number at pre-jump is  more than 9.0 The high-velocity 

 jet grabs intermittent slugs of water rolling down the front face of the jump, generating 

 waves downstream, and a rough surface can prevail. The jump action is rough but 

 effective since the energy dissipation may reach 85%. 

 
Fig 5.6 Strong jump 
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Example 5.1: Water flows under a sluice gate to discharge into a rectangular plain stilling basin 

having same width as the gate. After contraction of jet, the flow has an average velocity 24m/s 

and depth of flow 1.8m. Determine (i) sequent depth y2 9ii) height of the jump hJ (iii) length of 

the jump Lj (iv) loss of energy in the jump (∆E) (v) Efficiency of the jump(E2/E1) (vi) Types of 

jump expected (vii) ratio of froude’s number. 
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  Using momentum equation for jump analysis 
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Surges: 

 Whenever there is sudden change in the discharge or depth or both such situations occur, 

 sudden closure of gate. Surge produces increase in depth is called (+) surge. Surge causes 

 decrease in depth is called (-) surge. 

 

Positive surge moving downstream: 

  

 Consider a sluice gate in a horizontal friction less channel suddenly raised to cause a 

 quick change in the depth and (+) surge moving downstream. The sections (1) & (2) 

 conditions are before and after passage of surge, respectively. 

 The absolute velocity Vw   is assumed to be constant. The unsteady flow condition is 

 brought relative steady state by applying velocity (-Vw) to all directions. Energy 

 equation can’t be applied but momentum equation is applicable.  

 

  

 

 By continuity equation  
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 For a rectangular channel, considering unit width of the channel,  

 The continuity equation 
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 The momentum equation is simplified as  

                           
( ) 2111

2

2

2

1
2

1

2

1
VVVVy

g
yy w −−=−




 

 Substituting for V2 and simplifying, 
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Example5.1: A 3.0m wide rectangular channel has a flow of 3.6m3/s with a velocity of 0.8m/s 

.If a sudden release of additional flow at the upstream end of the channel causes depth rise by 50 

percent, determine the absolute velocity of the resulting surge and the new flow rate. 

The surge moves in downstream direction and absolute velocity of wave Vw is positive. By 

superimposing (-Vw) on the system the equivalent steady flow is obtained. 

Here,  
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For a positive surge moving downstream in a rectangular channel  
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Positive surge moving upstream: 

 This kind of surge occurs on the upstream of the sluice gate when the gate is closed 

suddenly. The unsteady flow is converted into an equivalent steady flow by super position of 

velocity Vw    Suffixes 1 & 2 refer to conditions at sections of the channel before and after the 

passage of surge respectively. 

Consider a unit width of a horizontal, frictionless and rectangular channel. 
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