

- **Summary of solution**

Mem.	Design load	A_g	A_n	U	A_e	Yield strength	Fracture strength	Block-shear strength	
<i>L4x3x1/2</i>	100 kips	3.25	2.69	0.9	2.41	105 kips	104.8 kips	119.13 kips	
		Design strength = 104.8 kips (net section fracture governs) <i>L4x3x1/2</i> is adequate for $P_u = 100$ kips and the given connection							

- Note: For this problem $A_e/A_g = 2.41/3.25 = 0.741$, which is < 0.745 . As predicted by the AISC manual, when $A_e/A_g < 0.745$, net section fracture governs.

Design of compression members

20/10/15
A vertical compression member in a building is called post (or) stanchion (or) column. compression member in a truss is strut. compression member in a crane is called boom.

columns are classified into (i) short (ii) intermediate (iii) long when the loads are acting 100% concentric, then the column fails due to crushing of the material (or) yielding of the material in compression. Generally the short columns will fail due to crushing of the material.

All the times it is not possible to have 100% axial load. Hence small (or) large eccentricity will form and a column will buckle (bend) when subjected to this eccentric loading. Due to this buckling the material will fail before it reaches crushing value. ∴ the load carrying capacity for a eccentrically loaded column decreases.

Generally all the intermediate & long columns will buckle. As per IS 800 : 2007, the buckling is classified into four categories class a, class b, class c and class d.

Theoretically the buckling is classified into

1) Local buckling → In this the individual elements of the column like flange (or) web buckle due to external loading. This can be prevented by providing suitable width to thickness ratio. 2) Flexural buckling (Euler's buckling) → Here the total column section buckles along its length. Generally the column bends about the axis corresponding to the largest slenderness ratio. usually the minor principal axis will have least radius of gyration and hence buckles around that axis. and hence buckles around that axis.

* Compression members of all types of cross-section configuration will fail in this way.

3) Torsional buckling → thin wall members with open (I) shape are sometimes weak in torsion and hence may buckle by twisting rather than buckling. Torsional buckling occurs when

Torsional rigidity \ll flexural rigidity

(CJ) (EI) All standard hot rolled sections are not susceptible to

Built-up members with thin plates will sometimes be subjected to Torsional buckling.

4) Flexural-Torsional buckling - This type of failure occurs due to combination of flexural buckling & torsional buckling i.e. the member bends and twists simultaneously.

* Unsymmetrical cross-sections with one axis of symmetry or no axis of symmetry are susceptible for such type of buckling.

* clauses 7.1 (Section-7) / Page 34-44 * (Flexural buckling).

* Calculate the design compressive load capacity of the column ISHB 300 @ 577 N/mm if the length of the column is 3m.

i) If both ends are pinned (ii) if column is restrained in direction and position at both ends.

Sol From steel tables, details of ISHB 300 @ 577 N/mm

$$h = 300 \text{ mm} \text{ and } b_f = 250 \text{ mm}, t_f = 10.6 \text{ mm}, A = 7484 \text{ mm}^2$$

$$\left(\frac{h}{b_f} = \frac{300}{250} = 1.2 \text{ and } t_f = 10.6 \text{ mm} \right) \text{ from Table-10/44, for I-section the } \frac{h}{b_f} \leq 1.2 \text{ and } t_f \leq 100 \text{ mm}$$

column buckles about z-z axis with buckling class-b case

i) Given Length of the column, (L) = 3m
Effective length (KL) = 1.0L (from table-11/45)

Both ends pinned (hinged)
i.e. (KL) = 3000 mm

⑥ column buckles about z-z axis with buckling class-b

$$\text{Slenderness ratio } \left(\frac{KL}{r} \right) = \frac{KL}{r_{zz}} = \frac{3000}{129.5} = 23.17 \text{ (since } r_{zz} = 12.95 \text{ cm})$$

As per clause 7.1.2.1, $F_{ec} = \text{Euler buckling stress} = \frac{\pi^2 E}{(KL)^2}$

$$= \frac{\pi^2 \times 2 \times 10^5}{(23.17)^2} = 3678.13 \text{ N/mm}^2$$

$$\text{and } \lambda = \sqrt{\frac{f_y}{F_{ec}}} = \sqrt{\frac{250}{3678.13}} \Rightarrow \lambda = 0.26$$

$$\phi = 0.5 [1 + \alpha(\lambda - 0.2) + \lambda^2]$$

$$= 0.5 [1 + 0.34(0.26 - 0.2) + 0.26^2]$$

$$\alpha = 0.34 \quad (\because \text{table-7})$$

$$\text{for class-b}$$

$$\Rightarrow \phi = 0.544$$

Design compressive stress, f_{cd}

$$\frac{f_y/r_{mo}}{\phi + [\phi^2 - \lambda^2]^{0.5}} \left(= \frac{\chi f_y}{r_{mo}} \leq \frac{f_y}{r_{mo}} \right)$$

$$\chi = \frac{1}{[\phi + (\phi^2 - \lambda^2)^{0.5}]} \\ = 0.9786$$

$$\Rightarrow f_{cd} = \frac{250/1.1}{0.544 + [0.544^2 - 0.26^2]^{0.5}} = 222.41 \text{ N/mm}^2$$

~~222.41 N/mm²~~

$$\text{AS per } \frac{7.1-2}{34}, \quad P_d = A_e f_{cd}$$

here $A_e = A_g$ (AS per $\frac{7.3-2}{46}$)

$$\Rightarrow P_d = A_g f_{cd}$$

~~222.41~~

$$\Rightarrow P_d = 1664.52 \text{ KN}$$

⑥ column buckles about y-y axis with buckling class-c

$$\text{slenderness ratio} = \frac{KL}{r_y y} = \frac{3000}{50.1} = 59.45$$

$$\text{AS per } \frac{7.1-2}{34}, \quad f_{cc} = \frac{\pi^2 E}{(KL)^2}$$

$$f_{cc} = 641.98 \text{ N/mm}^2$$

$$\lambda = \sqrt{\frac{f_y}{f_{cc}}} \\ = \sqrt{\frac{250}{641.98}}$$

$$\alpha = 0.49 \text{ for class-c} \quad (\because \text{table-7})$$

$$\phi = 0.5 [1 + \alpha(\lambda - 0.2) + \lambda^2] = 0.5 [1 + 0.49(0.624 - 0.2) + 0.624^2]$$

$$\Rightarrow \phi = 0.798$$

$$\text{Now, } f_{cd} = \frac{f_y/r_{mo}}{\phi + [\phi^2 - \lambda^2]^{0.5}} = \frac{250/1.1}{0.798 + [0.798^2 - 0.624^2]^{0.5}} \Rightarrow f_{cd} = 175.36 \text{ N/mm}^2$$

$$P_d = A_g f_{cd}$$

$$= 7484 \times 175.36$$

\therefore Design Compressive strength = 1312.43 KN

capacity of column when both ends are pinned

$$P_d = 1312.43 \text{ KN}$$

Case-1) Restrained in direction & position at both ends

Now Effective length (KL) = $0.65L$ $\left(\because \text{From table-11} \frac{45}{45}\right)$
 $= 0.65 \times 3000$

$$\Rightarrow KL = 1950 \text{ mm}$$

(a) Column buckles about z-z axis with buckling class 'b'.

Slenderness ratio = $\frac{KL}{r_{zz}} = \frac{1950}{129.5} = 15.05$

By interpolation,

$\frac{KL}{r}$	f_{cd}
10	227
20	225

for $\frac{KL}{r}$ at 15.05, $f_{cd} = 227 - \frac{2}{10}(227 - 225)$
 $f_{cd} = 226.6 \text{ N/mm}^2$

$$P_d = Ag f_{cd}$$

 $= 7484 \times 226.6 = 1695.874 \text{ KN}$

(b) column buckles about y-y axis, with buckling class 'c'

$$\frac{KL}{r_{yy}} = \frac{1950}{54.1} = 36.04$$

$\frac{KL}{r}$	f_{cd}
30	211
40	198

f_{cd} at $\frac{KL}{r} = 36.04 = 211 - \frac{6.04}{10}(211 - 198)$

$$= 203.148 \text{ N/mm}^2$$

$$P_d = Ag f_{cd}$$

$$= 7484 \times 203.148$$

$$P_d = 1520.35 \text{ KN}$$

Problem on Flexural Torsional buckling

An IIS 100 100, G mm is used as a strut in a truss. Length of strut b/n intersections at each end is 3m. calculate the strength of strut if (i) ends are fixed (ii) ends are hinged (iii) connected by two bolts at each end (iv) connected by 1 bolt at each end (v) connected by welding at each end

steel tables
Sol For IIS 100 100, G mm, $A = 1167 \text{ mm}^2$; $r_{yy} = 19.5 \text{ mm}$

(i) Ends are fixed, given $L = 3 \text{ m}$

(ii) connected by two bolts at each end

$$\text{As per } \frac{751.2}{48}, \lambda_e = \sqrt{k_1 + k_2 \lambda_{vv}^2 + k_3 \lambda_\phi^2}$$

$$\text{from table-1a, } k_1 = 0.80 \quad (\text{for fixed and two bolts})$$

$$k_2 = 0.35$$

$$k_3 = 20$$

$$\lambda_{vv} = \frac{\left(\frac{L}{r_{yy}}\right)}{\epsilon \sqrt{\frac{\pi^2 E}{250}}} = \frac{3000/19.5}{1 \sqrt{\frac{\pi^2 \times 2 \times 10^5}{250}}} ; \epsilon = \left(\frac{0.50}{f_y}\right)^{0.5} = \left(\frac{250}{250}\right)^{0.5} = 1$$

$$\Rightarrow \lambda_{vv} = 1.73$$

$$\lambda_\phi = \frac{(b_1 + b_2)/2t}{\epsilon \sqrt{\frac{\pi^2 E}{250}}} = \frac{(100 + 100)/2 \times 6}{1 \sqrt{\frac{\pi^2 \times 2 \times 10^5}{250}}} \Rightarrow \lambda_\phi = 0.1875$$

$$\therefore \lambda_e = \sqrt{0.2 + (0.35 \times 1.73^2) + (20 \times 0.1875^2)}$$

$$\Rightarrow \lambda_e = 1.395$$

$$\text{As per } \frac{7.1-2.1}{34}, \phi = 0.5 [1 + \alpha(\lambda - 0.2) + \lambda^2] \quad (\lambda = \lambda_e)$$

$$\alpha = 0.49 \quad (\text{Table-7}) \quad (\text{L-section-class C - Table-10/44})$$

$$\Rightarrow \phi = 0.5 [1 + 0.49(1.395 - 0.2) + 1.395^2]$$

$$\Rightarrow \phi = 1.765$$

$$f_{cd} = \frac{f_y / f_{m0}}{\phi + [\phi^2 - \lambda^2]^{0.5}} = \frac{250/1.1}{1.765 + [1.765^2 - 1.395^2]^{0.5}} \Rightarrow f_{cd} = 79.84 \text{ N/mm}^2$$

$$\text{Q. } \frac{7.1-2.1}{34}, P_d = A_e f_{cd} \quad A_e = A_g \left(\frac{7.3 \cdot 2}{46}\right)$$

$$P_d = 1167 \times 79.84 \Rightarrow P_d = 9317 \text{ KN}$$

iii, connected by 1 bolt at each end

From Table-12 $K_1 = 0.75$; $K_2 = 0.35$; $K_3 = 20$

$$\lambda_e = \sqrt{K_1 + K_2 \lambda_{vv}^2 + K_3 \lambda_\phi^2}$$

$$= \sqrt{0.75 + (0.35 \times 1.73^2) + (20 \times 0.187^2)}$$

$$\Rightarrow \lambda_e = 1.58$$

$$(\phi = 0.5 [1 + \alpha (\lambda - 0.2) + \lambda^2] = 0.5 [1 + 0.49 (1.58 - 0.2) + 1.58^2]$$

$$\Rightarrow \phi = 2.086$$

$$f_{cd} = \frac{f_y / f_{mo}}{\phi + [\phi^2 - \lambda^2]^{0.5}} = \frac{250/1.1}{2.086 + [2.086^2 - 1.58^2]^{0.5}} \Rightarrow f_{cd} = 65.9 \text{ N/mm}^2$$

$$P_d = A_e f_{cd} = 1167 \times 65.9 = 76.9 \times 10^3 \text{ N}$$

$$\Rightarrow P_e = 76.9 \text{ kN}$$

iii, connected by welding at each end
The strength of welded strut will be same as that of simple strut connected with two bolts at each end, with the ends considered fixed.

⑥ Ends are hinged

iv, connected by two bolts at each end

$$\lambda_e = \sqrt{K_1 + K_2 \lambda_{vv}^2 + K_3 \lambda_\phi^2}$$

From table-12 $K_1 = 0.70$

$$\lambda_{vv} = 1.73$$

$$K_2 = 0.60 \quad \lambda_\phi = 0.187$$

$$K_3 = 5$$

$$\Rightarrow \lambda_e = \sqrt{0.7 + (0.6 \times 1.73^2) + (5 \times 0.187^2)}$$

$$\Rightarrow \lambda_e = 1.634$$

$$\phi = 0.5 + [1 + \alpha (\lambda - 0.2) + \lambda^2] = 0.5 + [1 + 0.49 (1.634 - 0.2) + 1.634^2]$$

$$\Rightarrow \phi = 2.18$$

$$f_{cd} = \frac{f_y / f_{mo}}{\phi + [\phi^2 - \lambda^2]^{0.5}} \Rightarrow f_{cd} = 62.73 \text{ N/mm}^2$$

$$P_d = A_e f_{cd} = 1167 \times 62.73 = 73.2 \times 10^3 \text{ N}$$

$$\Rightarrow P_d = 73.2 \text{ kN}$$

ii, iii, & iv are calculated.

* Design of compression members:

procedure:

step-1: Assume design compressive stress (f_{cd})

$f_{cd} = 90 \text{ N/mm}^2$ — For Angle struts having $\frac{KL}{\pi} = 110 \text{ to } 130$

$f_{cd} = 135 \text{ N/mm}^2$ — For Beam sections (I) $\frac{KL}{\pi} = 70 \text{ to } 90$

$f_{cd} = 200 \text{ N/mm}^2$ — for compression members carrying large loads

step-2: calculate A_g using $A_g = \frac{P_u}{f_{cd}}$; P_u = factored compressive load

step-3: Select a ^{section} having area more than A_g required

calculate r_{min} ← step-4:

step-5: Determine Effective length based on end conditions

find slenderness ratio ($\frac{KL}{r_{min}}$) must be

step-6: calculate $P_d = A_e f_{cd} > P_u$

* Design a single angle discontinuous strut to carry a factored axial compressive load of 65 kN. Length of strut is 3m b/l intersecting It is connected to a 12 mm thick gusset plate by 20 mm dia. 4.6 grade bolts. Use Fe 410 steel.

Given data: $P_u = 65 \text{ kN}$, $L = 3 \text{ m}$, $d = 20 \text{ mm}$, $d_h = 22 \text{ mm}$

Assuming $f_{cd} = 90 \text{ N/mm}^2$ for Angle strut

$$A_g \text{ required} = \frac{P_u}{f_{cd}} \Rightarrow A_g \text{ required} = \frac{65 \times 10^3}{90}$$

$$= 722.22 \text{ mm}^2$$

Try I3A 70 70, 8 mm having $A_g = 1058 \text{ mm}^2 (> 722.22 \text{ mm}^2)$

$$r_{vv} = 13.5 \text{ mm}$$

calculation of no. of bolts required

Strength of 20 mm dia. 4.6 grade bolts

$$\text{In single shear, } V_{dsb} = \frac{V_{nsb}}{r_{mb}}$$

$$\left(\frac{1.10 \cdot 3 \cdot 3}{75} \right)$$

$$= \frac{f_u}{\sqrt{3}} (n_n A_{nb} + A_{sb} n_s) \frac{1}{r_{mb}}$$

$$= \frac{400}{\sqrt{3}} \left(0 + 0.78 \cdot \frac{\pi \cdot 20^2}{4} \right) \frac{1}{1.25}$$

$$\Rightarrow V_{dsb} = 45.27 \text{ kN}$$

$$(e) \text{ In bearing, } V_{dpb} = 2.5 k_b d t \frac{f_u}{f_m b}$$

$$\left(\frac{1.10 \cdot 3.4}{75} \right)$$

$$k_b = \frac{e}{3d_0}, \frac{p}{3d_0} = 0.25, \frac{f_u}{f_m}, 1.0$$

$$= \frac{40}{3 \times 22}, \frac{50}{3 \times 22} = 0.25, \frac{400}{410}, 1.0$$

$$\left(\frac{0.606}{0.507} \right)$$

$$\left(\frac{1}{0.975} \right)$$

$$k_b = \frac{1}{0.975}$$

$$k_b = 1.02$$

$$\Rightarrow V_{dpb} = 2.5 \times 0.507 \times 20 \times 8 \times \frac{410}{1.25}$$

$$\Rightarrow V_{dpb} = 66.58 \text{ kN}$$

∴ strength of bolt is $\frac{45.21 \text{ kN}}{2}$

$$\text{No. of bolts required} = \frac{P_u}{V_{dsb}} = \frac{65}{45.21} = 1.4 \approx 2 \text{ bolts}$$

$$\text{Assume hinged ends, from Table-12} \quad k_1 = \frac{48}{48} = 1.0, \quad k_2 = 0.60, \quad k_3 = 2.0$$

$$\text{As per } \frac{7.5 \cdot 1.2}{48}, \lambda_e = \sqrt{k_1 + k_2 \lambda_{vv}^2 + k_3 \lambda_{\phi}^2}$$

$$\lambda_{vv} = \frac{(1/r_w)}{\sqrt{\frac{\pi^2 E}{250}}}$$

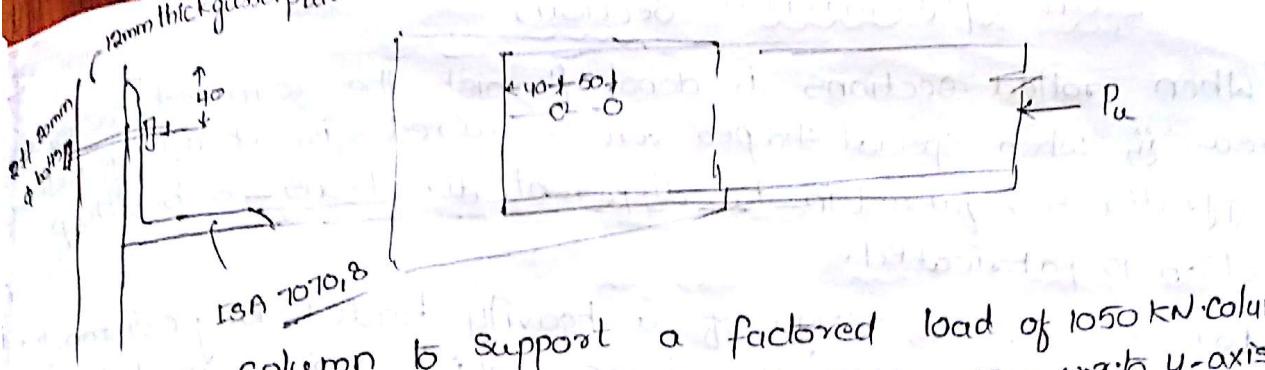
$$\lambda_{vv} = \frac{(3000/13.5)}{\sqrt{\frac{\pi^2 \times 2 \times 10^5}{250}}} = 1.50$$

$$E = \left(\frac{f_u}{850} \right)^{0.5} = 250 \text{ N/mm}^2$$

$$\lambda_{\phi} = \frac{(b_1 + b_2)/2t}{\sqrt{\frac{\pi^2 E}{250}}} = \frac{(70 + 70)/2 \times 8}{\sqrt{\frac{\pi^2 \times 2 \times 10^5}{250}}} = 0.0984$$

$$\Rightarrow \lambda_e = \sqrt{0.20 + (0.507)^2 + (2.0 \times 0.0984)^2}$$

$$\Rightarrow \lambda_e = 1.6061 \quad (\alpha = 0.49 \text{ for class-C})$$


$$\phi = 0.5 [1 + \alpha (0.2 - 0.2) + \lambda_e^2] = 0.5 [1 + 0.49 (1.6061 - 0.2) + 0.507^2]$$

$$\Rightarrow \phi = 0.8176$$

$$f_{cd} = \frac{f_y/f_m}{\phi + [\phi^2 - \lambda_e^2]^{0.5}} = 1.4031 \text{ N/mm}^2$$

$$A_e f_{cd} = A_g f_{cd} = 1058 \times 1.4031 = 67.93 \text{ kN} (\gtrsim 65 \text{ kN})$$

Hence safe

* Design a column to support a factored load of 1050 kN. Column has an effective length of 7m w.r.t. to Z-axis and 5m w.r.t. to Y-axis. Use Fe410 steel.

Given $P_u = 1050 \text{ kN}$ - for I-section

Assuming $f_{cd} = 135 \text{ N/mm}^2$

$$A_g \text{ required} = \frac{P_u}{f_{cd}} = \frac{1050 \times 10^3}{135} \Rightarrow A_g \text{ req} = 7777.77 \text{ mm}^2$$

Try ISH13 @ 601.8 N/m having $A_g = 8591 \text{ mm}^2$ ($\geq 7777.77 \text{ mm}^2$)

$$I_{zz} = 19159.7 \times 10^4 \text{ mm}^4; I_{yy} = 2451.4 \times 10^4 \text{ mm}^4; h = 350 \text{ mm}; b = 250 \text{ mm}$$

$$t_p = 11.6 \text{ mm}; r_{yy} = 53.4 \text{ mm}; r_{zz} = 149.3 \text{ mm}$$

$$\frac{h}{b_p} = \frac{350}{250} = 1.4 > 1.2 \text{ and } t_p = 11.6 \text{ mm} < 40 \text{ mm}$$

From Table-10, the given column buckles about z-z axis with class-a (b) and about y-y axis with class-b.

i) Buckling about z-z axis with class-a:

Given, Effective Length (KL) = 7m about z-z axis

$$r_{zz} = 149.3 \text{ mm}$$

$$\text{Slenderness ratio} \left(\frac{KL}{r_{zz}} \right) = \frac{7000}{149.3} = 46.88$$

$$f_y = 250 \text{ N/mm}^2$$

$$\text{From Table-9(a)} \quad f_{cd} = \frac{207.4}{40} \text{ N/mm}^2$$

$$P_d = A_e f_{cd} = 8591 \times 207.4 = 1781.77 \text{ kN} (\geq 1050 \text{ kN})$$

Hence safe

ii) Buckling about y-y axis with class-b:

Given, Effective Length (KL) = 5m about y-y axis; $r_{yy} = 53.4 \text{ mm}$

$$\frac{KL}{r_{yy}} = \frac{5000}{53.4} = 93.63 \text{ and } f_y = 250 \text{ N/mm}^2$$

$$P_d = A_e f_{cd} = \frac{8591 \times 128.2}{40} = 2136 \text{ kN} (\geq 1050 \text{ kN})$$

Built-up (columns) Sections

When rolled sections i, do not furnish the required section area ii, when special shapes are required iii, when large radius of gyration is required in two different directions - a built-up section is fabricated.

For economical design of a heavily loaded long column the least radius of gyration of column section is increased to the maximum. For this the rolled sections are kept away from the centroidal axis of the column and connected by some connecting systems - called Lattice Systems. Lacing commonly, Lattice systems are two types - [batten

Primary function of Lacings (or) Battens is to hold and keep the main member of built up column in their relative position. Hence they are not carried as load carrying elements. Flats ~~are~~ / angle sections are normally used as Lacings.

Generally Lacings are connected with single bolt at the end. Lacings are subjected to shear forces due to horizontal forces on the column.

Lacings are designed for compression members and checked for tension.

- Design of Laced columns:
- Design of the column (Built-up): (a) slenderness ratio
- For built-up columns assume $f_{cd} = 150$ to 190 N/mm^2
- While calculating Effective slenderness ratio take r_{min} as the maximum value of r_{yy} and r_{zz}
- As per cl. 7.6.1.5, Increase the $(\frac{KL}{r})$ value by 5%.
- For spacing of column elements equate I_{yy} to I_{zz} for a built-up column.

- Design of Lacings:
- Assume single or double Lacing
- Assume inclination of Lacings as per $\frac{7.6.4}{50}$
- Find compressive force in each Lacing part as per $\frac{7.6.6.1}{50}$
- Check $\frac{a}{r}$ as per $\frac{7.6.5.1}{50}$
- Find dimensions of Lacing part as per $\frac{7.6.2}{50}$ and $\frac{7.6.3}{50}$

1. Find slenderness ratio, f_{cd} and P_u for Lacing part.

2. Check the lacing bar for tension as per 6.2 & 6.3.

3. Design the connection of Lacing bar with main column

4. Design the tie bar at the end as per 7.7.2.2 and 7.7.2.3

5. Design a built-up column 10m long to carry a factored axial load of 1080 kN. Column is restrained in position but not in direction at both ends. Provide single Lacing system with bolted connection.

6. Design the column with two channels placed back to back toe to toe

7. Design of built-up column: Assuming $f_{cd} = 150 \text{ N/mm}^2$ for built-up column

Given $P_u = 1080 \text{ kN}$

$$A_g \text{ required} = \frac{P_u}{f_{cd}} = \frac{1080 \times 10^3}{150}$$

$$\Rightarrow A_g \text{ req} = 7200 \text{ mm}^2$$

Try two ISMC 300, @ 351.2 N/m having $A_g = 2 \times 4564 = 9128 \text{ mm}^2$ ($> 7200 \text{ mm}^2$).

From steel tables details of ISMC 300, $A = 4564 \text{ mm}^2$; $r_{yy} = 26.1 \text{ mm}$; $r_{zz} = 118.1 \text{ mm}$; $C_{yy} = 23.6 \text{ mm}$

$I_{yy} = 6368.6 \times 10^4 \text{ mm}^4$; $I_{zz} = 310.8 \times 10^4 \text{ mm}^4$; $b_f = 90 \text{ mm}$; $t_f = 10 \text{ mm}$

In the design of built-up columns with two sections the sections are so spaced that the Least radius of gyration of the built-up section becomes as large as possible. This can be achieved by spacing the section in such a way that ' r_{min} ' is max. value of

r_{yy} (or) r_{zz} $\therefore r_{min} = r_{zz} = 118.1 \text{ mm}$

$$\frac{r_{KL}}{r_{min}} = \frac{10 \times 10^3}{118.1} = 84.67 = \left(\frac{KL}{r} \right)_o$$

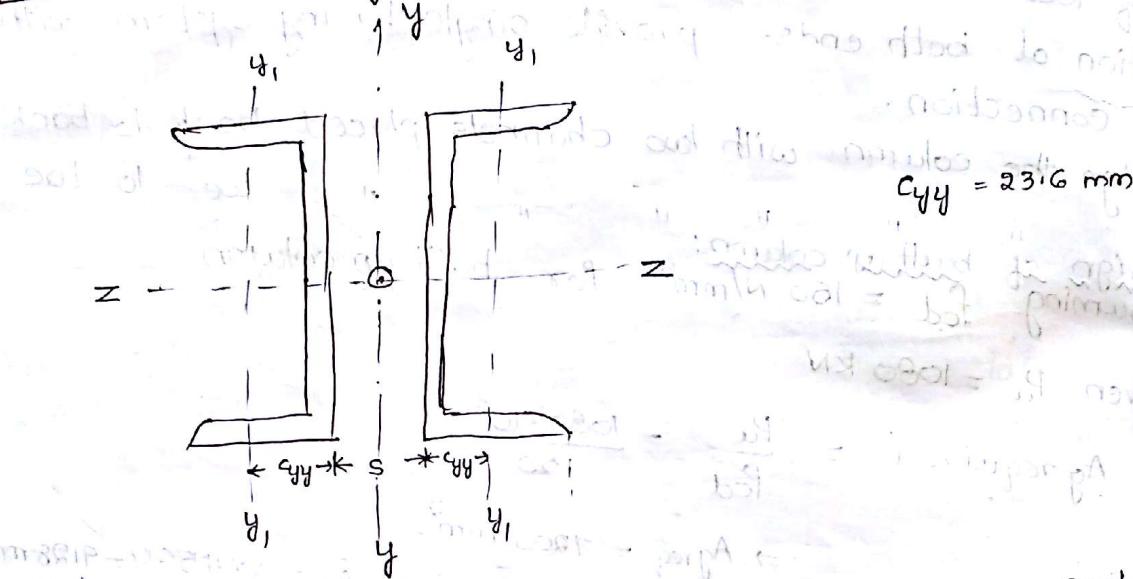
Effective length of column $KL = 1.0L$ (\because Table-1/45)

$$\therefore \text{per 7.6.1.5, } \left(\frac{KL}{r} \right)_c = 1.05 \left(\frac{KL}{r} \right)_o$$

$$\Rightarrow \left(\frac{KL}{r} \right)_c = 88.9 \text{ mm} \quad f_y = 250 \text{ N/mm}^2$$

From Table-10, channel sections - Buckling class-C

$$\therefore f_{cd} = 190.65 \text{ N/mm}^2$$


$$\Rightarrow P_d = A_e f_{cd} = (2 \times 4564) \times 122.65$$

$$\Rightarrow P_d = 1119.55 \text{ kN} (\geq 1080 \text{ kN})$$

Hence safe

@ Two channels placed back to back:

calculation of Spacing of channels:

Let 's' be spacing of channels. $z-z$ and $y-y$ axes are centroidal axis for built-up section. y_1-y_2 is centroidal axis for individual channel section.

For calculation of 's' (for built-up section) I_{zz} is equated to I_{yy}

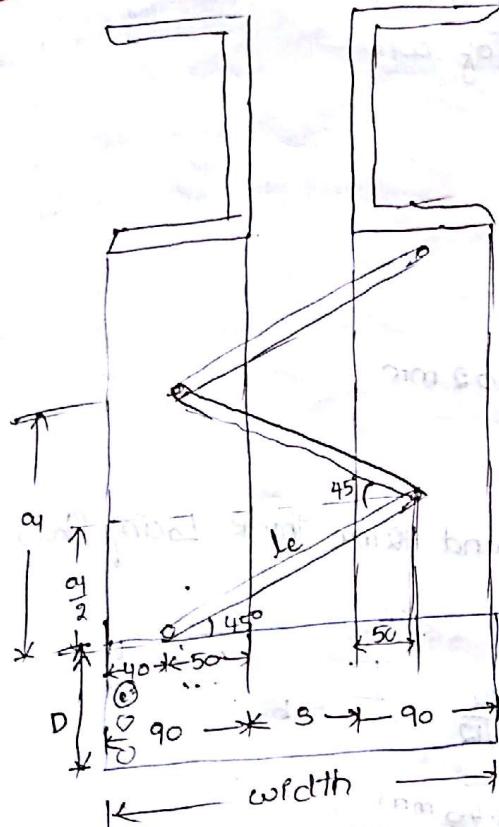
$$I_{zz} = I_{yy}$$

$$2 \times 6362.6 \times 10^4 = [I_{yy} + \frac{a h^2}{12}]_2$$

$$= 2 [310.8 \times 10^4 + 4564 \times \left(\frac{s}{2} + 23.6\right)^2]$$

$$6362.6 \times 10^4 = \left[310.8 \times 10^4 + \left(\frac{s^2}{4} + 556.96 + 2 \left(\frac{s}{2} \times 23.6 \right) \right) 4564 \right]$$

$$\Rightarrow (s^2 + 2227.84 + 94.48) 4564 = 6051.8 \times 10^4$$


$$\Rightarrow s = 183.1 \text{ mm} \quad \text{Say } 183.5 \text{ mm}$$

Lacing System:

Providing single Lacing system.

As per 7.6.4, Lacing bars can be inclined at 40° to 70° w.r.t horizontal.

Hence provide single Lacing system at inclination of 45° to horizontal.

The diagram shows a stepped foundation with the following dimensions:

- Top width: 180 mm
- Top thickness: 30 mm
- Second step width: 183 mm
- Second step thickness: 30 mm
- Third step width: 186 mm
- Third step thickness: 30 mm
- Bottom width: 189 mm
- Bottom thickness: 30 mm

A line representing a 45-degree slope is drawn from the top left corner to the bottom right corner of the foundation.

Let 'l' be the effective length of lacing

$$= \sqrt{83.5^2 + 283.5^2}$$

$$\Rightarrow L = 400.93 \text{ mm}$$

as per $\frac{7 \cdot 6 \cdot 5 \cdot 1}{50}$, r_i = min. radius of gyration of individual member

$$\Rightarrow r_1 = 26.1 \text{ mm}$$

$$\frac{a_1}{r_1} = \frac{567}{261}$$

Design of Lacing box: Hence OK

Design of Lacing bolt: $\sigma_{max} = 0.5-1$ of the axial force

$$\text{For } \frac{7.6 \cdot 6.1}{50}, \text{ Total transverse shear } = 45.7 \text{ kN}$$

~~maximum wind load per~~ $\frac{0.02}{0.01} = 27 \text{ kN}$ among all transverse-lacing systems.

in parallel planes.

$$\text{transverse shear in each panel} = \frac{27}{2} = 13.5 \text{ kN}$$

Lacing is subjected to a compressive force of 19.09 KN. Hence the lacing is to be designed for this compressive load and should be checked for tension.

Size of Lacing as per 7-6-3
50

Size of Lacing as per 14.6.3 50, Assuming 16 mm dia. bolts for the

connection of Lacing with the main member.

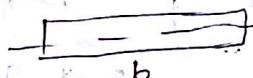
width of Lacing = $3 \times$ Nominal dia. of bolt

$$= 3 \times 16$$

$$= 48 \text{ mm}$$

Say width = 50 mm

thickness (t) $\neq \frac{1}{40} \times l_e$


$$\neq \frac{1}{40} \times 400.93 \neq 10.02 \text{ mm}$$

provide 12 mm thick lacing

∴ Size of Lacing is 50 mm wide and 12 mm thick Lacing flats i.e.

50 ISF 12

$$r_{min} = \sqrt{\frac{I_p}{A}} = \sqrt{\frac{b t^3}{T_s}} = \frac{t}{\sqrt{12}} = \frac{12}{\sqrt{12}}$$

$$\Rightarrow r_{min} = 3.46 \text{ mm}$$

$$\text{Slenderness ratio}(\lambda) = \frac{l_e}{r_{min}} = \frac{400.93}{3.46} = 115.74$$

Table-10 $\frac{44}{44}$, flat is under class-C buckling

from Table-9(c), $f_{cd} = 88.2 \text{ N/mm}^2$

$$P_d = A_e \times f_{cd} = (50 \times 12) 88.2 = 52.92 \times 10^3 \text{ N}$$

$$\Rightarrow P_d = 52.92 \text{ kN} > 19.09 \text{ kN}$$

Hence safe

check for tension for Lacing flats: d. 6.2 and 6.3

$$@ T_{dg} = \frac{A_g \times f_y}{r_{mo}} = \frac{(50 \times 12) (250)}{32} \Rightarrow T_{dg} = 136.36 \text{ kN} (> 19.09 \text{ kN})$$

⑥ T_{dn} for plate = $0.9 \frac{A_{tn} f_u}{r_{ml}}$

$$A_{tn} = (50 - 12) 12$$

$$= 384 \text{ mm}^2$$

$$= 0.9 \left(\frac{384 \times 410}{1.25} \right)$$

$$\Rightarrow T_{dn} = 113.36 \text{ kN} (> 19.09 \text{ kN})$$

⑦ T_{db} = $\left(\frac{\text{Avg } f_y}{1.25 r_{mo}} + 0.9 \frac{A_{tn} f_u}{r_{ml}} \right) (1)$

$$\text{Avg } f_y = 40 \times 12 = 480 \text{ mm}^2$$

$$r_{mo} = (50 - \frac{1}{2} \times 12) 12 = 372 \text{ mm}^2$$

$$A_{tg} = (25 \times 12) = 300 \text{ mm}^2$$

$$A_{tn} = (25 - \frac{1}{2} \times 12) 12 = 192 \text{ mm}^2$$

$$T_{db} = \left(\frac{0.9 A_{ntu}}{\sqrt{3} f_m} + A_{tg} \frac{f_y}{f_{y0}} \right) = 131.5 \text{ kN} > 19.09 \text{ kN}$$

Hence safe

$$(T_d > 19.09 \text{ kN})$$

connection with 16 mm dia. bolt to the main column

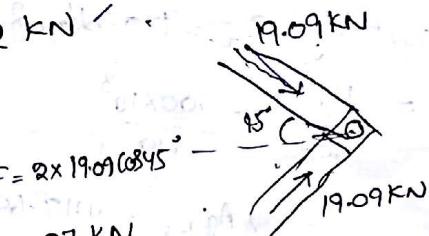
strength of 16 mm dia. bolt

ii) In double shear, $V_{dsb} = \frac{f_u b}{\sqrt{3} f_m} [n_n A_{nb} + n_s A_{sb}]$

$$= \frac{400}{\sqrt{3} \times 1.25} \left[\frac{\pi}{4} \times 16^2 + 0.78 \times \frac{\pi}{4} \times 16 \right]$$

iii) In bearing, $V_{dpb} = 0.5 K_b d t \frac{f_u}{f_m}$

$$= 0.5 \times 0.491 \times 16 \times \frac{410}{1.25} \text{ (see cl 10.3-4)}$$


$e + 1.5 \times 18 + 27 \text{ mm}$

$p \neq 2.5 \times 16 + 40 \text{ mm}$

$$\Rightarrow V_{dpb} = 77.303 \text{ kN}$$

\therefore strength of the bolt = 66.12 kN

\leq SF coming on the bolt from the two lacing flats as shown

\therefore No. of bolts required = $\frac{27}{66.12} = 0.408$ say 1 bolt

connect 50 ISF 19 with 16 mm dia. bolt to the main column

Design of Tie members

as per cl. 7.7.2.2, Tie plates are provided at the ends of Laced Columns

width = $183.5 + 90 + 90 = 363.5 \text{ mm}$

Effective depth \neq distance b/n centroids of main members

$$\neq s + (2 \times 30.6)$$

$$\neq 230.7 \text{ mm} \neq 2 \times \text{width of 1 member} \\ 2 \times 90 = 180 \text{ mm}$$

$$\text{Overall depth} = 230.7 + (2 \times e) = 230.7 + (2 \times 30) = 290.7 \approx 300 \text{ mm}$$

Thickness (t) $\neq \frac{1}{50} \times$ Distance b/n innermost connecting lines of bolts \neq to main member

$$\neq \frac{1}{50} \times (183.5 + 50 + 50) \neq 5.6 \text{ mm}$$

$$\Rightarrow t = 6 \text{ mm}$$

Provide Tie plate of width 363.5 mm, 300 mm Overall depth and 6 mm + the bottom

2/3/15 (b) Two channels placed toe to toe:

Spacing of channels(s):

$I_{yy} = I_{zz}$

$2(I_{yy} + \alpha h^2) = 2I_{zz}$

$2 \left[310.8 \times 10^4 + (4564) \left(\frac{5}{2} - 23.6 \right)^2 \right] = 2 \times 6362.6 \times 10^4$

$\Rightarrow s = 277.5 \text{ mm}$

Lacing system same as (a)

* Design a built-up column with four angles. The column is 1.8m long and supports a factored axial compressive load of 100 kN. The ends of the column are held in position and restrained against rotation. Design a double Lacing system using Fe410 steel.

Fe410 Steel.

Assuming $f_{cd} = 170 \text{ N/mm}^2$

$$\text{Ag required} = \frac{P_a}{f_{cd}} = \frac{700 \times 10^3}{110}$$

$$\Rightarrow \text{Ag req} = 4117$$

Try ISA 90.90, 6 mm 4 numbers each

$$\text{area } A_g = 1047 \text{ mm}^2 \text{ ; } c_{yy} = c_{zz} = 24.2 \text{ mm}$$

$$r_{yy} = r_{zz} = 27.7 \text{ mm} \quad ; \quad I_{yy} = I_{zz} = 80.1 \times 10^4 \text{ mm}^4$$

Area of 4 angle sections
Arrangement of the angles:

Length of column $\left(\downarrow\right) = 12\text{m}$

$$\text{From Table 11, } KL = 0.65L = 0.65 \times 12 \times 10^3 = 7800 \text{ mm}$$

we have $f_y = 250 \text{ N/mm}^2$ and $f_{cd} = 170 \text{ N/mm}^2$
 For Angle section, buckling class is C $(\because \text{from Table-} \frac{10}{44})$

From page 42 - Table - 9(c) $\frac{KL}{r} = 58.67$

$$\text{As per } \frac{1 \cdot G \cdot 1 \cdot 5}{48}, \quad \left(\frac{KL}{r}\right) \approx 1.05 \left(\frac{KL}{r}\right) = 1.05 \times 58.67$$

$$\Rightarrow r = \frac{7800}{61.6}$$

$$\Rightarrow r = 126.6 \text{ mm}$$

we know that $I = AK^2 = Ar^2$

$$I = 4188 \times 126.6^2$$

$$\Rightarrow I = 6712.3 \times 10^4 \text{ mm}^4$$

Arranging 4 angle sections as shown. Let s be the spacing b/w the channels as shown.

$$I_{yy} = I_{zz} = I_{\text{required}}$$

$$4(I_{yy,1} + ah^2) = I_{\text{required}}$$

$$\Rightarrow 4(80.1 \times 10^4 + 1047 \times \left(\frac{s}{2} - 24.2\right)^2) = 6712.3 \times 10^4$$

$$\Rightarrow s = 295.48 \text{ mm}$$

$$\text{res } s = 295.5 \text{ mm}$$

As $I_{yy} = I_{zz}$ for the built-up section, for the angle section $I_{yy} = I_{zz}$ \therefore the spacing of the built-up column in other direction is also $s = 295.5 \text{ mm}$

Hence the built-up column is a square column.

For $(\frac{KL}{r})_e = 61.6$, $f_y = 250 \text{ N/mm}^2$ and class-C buckling

as per Table-9C, $f_{cd} = 165.44 \text{ N/mm}^2$ ($\leq 700 \text{ KN}$)

$$\therefore P_d = A_e f_{cd} = (4 \times 1047)(165.44) = 6948.8 \text{ KN}$$

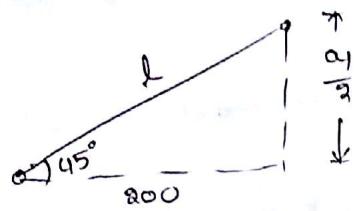
Hence Unsafe

Increase the spacing to 300 mm with 300 mm spacing provided

$$\text{is } 4 \left[80.1 \times 10^4 + 1047 \left(\frac{300}{2} - 24.2 \right)^2 \right] = 6948.17 \times 10^4 \text{ mm}^4$$

$$I = Ar^2 \Rightarrow r = \frac{6948.17 \times 10^4}{4188} = 168.6 \text{ mm}$$

$$(\frac{KL}{r})_e = \frac{7800}{168.6} = 60.5$$


$$\text{From Table-9CC, } f_{cd} = 167.5 \text{ N/mm}^2$$

$$\therefore P_d = (4 \times 1047)(167.5) = 701.5 \text{ KN} (\leq 700 \text{ KN})$$

Hence Safe

Double Lacing System!

let the lacing flats be inclined at 45° ($\therefore \frac{7.64}{50}$)

$$\tan 45^\circ = \frac{a_1}{200} \Rightarrow a_1 = 200\text{ mm}$$

$$l = \frac{200}{\cos 45^\circ} \Rightarrow l = 282.84\text{ mm}$$

$$\left(\frac{a_1}{r_1}\right) = \frac{400}{27.7} = 14.44 \neq 50$$

r_1 = min. radius of gyration for individual mass.

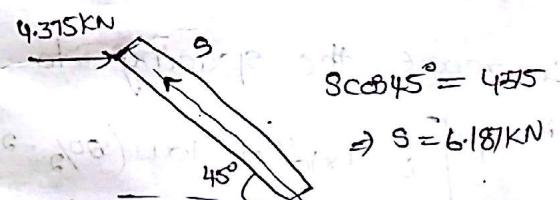
$$\text{As per } \frac{7.6.6.1}{50}, \quad 0.7 \left(\frac{kl}{r_e} \right) = 0.7 \cdot 6.5.1 = 47.7 \text{ mm}$$

$$= 0.7 \times 605 = 42.35$$

Hence OK

Design of Lacing bar

As per 7.6.6.1, Transverse shear (V_t) = 0.57 of Axial force


$$\text{Transverse shear } V_t = \frac{0.57 \times 700}{100} = 49.9 \text{ KN}$$

$$\Rightarrow V_t = 17.5 \text{ KN}$$

Force transferred in each lacing system = $\frac{17.5}{2} = 8.75 \text{ KN}$
For double Lacing system each lacing flat will be subjected to

$$\frac{8.75}{2} = 4.375 \text{ KN load (transverse).}$$

compressive force on the lacing bar

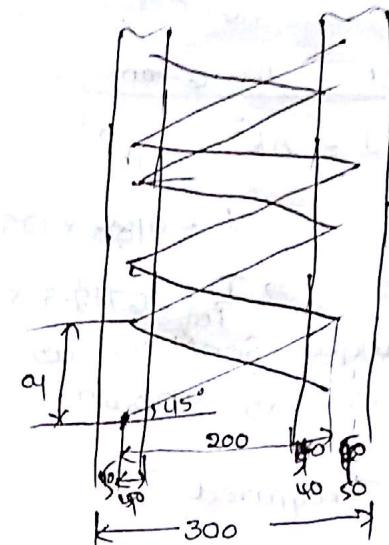
Lacing flat Design:

Each lacing flat should be designed for a compressive force of 6.187 KN and should be checked for tension.

Effective length of lacing bar is 'l'.

$$\text{As per } \frac{7.6.3}{50}, \quad t \neq \frac{1}{60} \times l_e$$

$$\left[\text{As per } \frac{7.6.3}{50}, l_e = 0.7l \right. \\ \left. = 0.7 \times 282.84 \right]$$


$$t \neq \frac{1}{60} \times 197.98$$

$$\neq 3.299 \text{ say } 3.3 \text{ mm}$$

$$\Rightarrow l_e = 197.98 \text{ mm}$$

As per 7.6.3, minimum width = 3 dia. of bolt (Assume 16mm dia. bolt)

$$= 3 \times 16 = 48 \text{ mm} \quad \text{say } 50 \text{ mm}$$

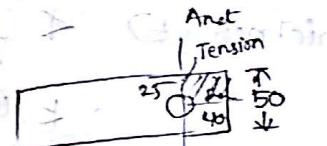
Page 49
IS-800:300

provide 50 ISF 6

$$r_{min} \text{ for the flat} = \sqrt{\frac{I}{A}} = \sqrt{\frac{\frac{b t^3}{12}}{b t}} = \frac{t}{\sqrt{12}} = \frac{6}{\sqrt{12}} \Rightarrow r_{min} = 1.732 \text{ mm}$$

$$\frac{l_e}{r} = \frac{197.98}{1.732} = 114.3$$

for slenderness ratio - 114.3, $f_y = 250 \text{ N/mm}^2$ and class-C buckling from Table-9(c), $f_{cd} = 89.7 \text{ N/mm}^2$


$$P_d = A_e \times f_{cd} = A_g \times f_{cd} = (50 \times 6) \times 89.7 = 26.91 \text{ kN} > 6.187 \text{ kN}$$

Hence safe

check for stresses in Tension:

$$① T_{dg} = \frac{A_g f_y}{r_{mo}} = \frac{(50 \times 6)(250)}{1.1} = 68.18 \text{ kN} > 6.187 \text{ kN}$$

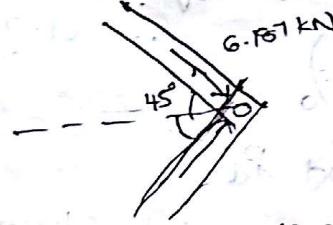
$$② T_{dn} = \frac{0.9 A_{nT} f_u}{r_{mi}} = \frac{0.9 \times (50-18)6 \times 410}{1.25} \Rightarrow T_{dn} = 56.67 \text{ kN} > 6.187 \text{ kN}$$

$$A_n = (50-18)6$$

$$③ T_{db} = \frac{A_{dg} f_y}{\sqrt{3} r_{mo}} + \frac{0.9 A_{bn} f_u}{r_{mi}} \quad (i) \quad \frac{0.9 A_{nT} f_u}{\sqrt{3} r_{mi}} + \frac{A_{dg} f_y}{r_{mo}} \quad (ii)$$

$$59.83 \text{ kN}$$

$$A_{dg} = 40 \times 6$$


$$A_{dg} = 25 \times 6$$

$$A_{bn} = (40 - \frac{1}{2} \times 18)6, \quad A_{nT} = (25 - \frac{1}{2} \times 18)6$$

Hence safe in compression as well as in Tension.

Connections:

05/3/15

Force transmitted from the lacing bars on to the bolt = $6.18 \cos 45^\circ \times 2 = 8.74 \text{ kN}$

Using 16 mm dia bolts, strength of bolt in

$$④ \text{Double shear (doubt)} \quad f_u \left(n_p A_{nb} + n_s A_{sb} \right) = \frac{f_u}{\sqrt{3} r_{mb}} \left(n_p A_{nb} + n_s A_{sb} \right)$$

$$= \frac{400}{\sqrt{3} \times 1.25} \left[1 \times \frac{\pi}{4} \times 16^2 + 1 \times 0.78 \times \frac{\pi}{4} \times 16^2 \right]$$

$$⑤ \text{Bearing } (V_{dpb}) \Rightarrow V_{dpb} = 665.12 \text{ kN}$$

$$⑥ \text{Bearing } (V_{dpb}) = 0.5 (k_b) d t \frac{f_u}{r_{mb}} = 0.5 \times 0.49 \times 16 \times 6 \times \frac{410}{1.25}$$

\therefore strength of bolt = 38.5 KN

no. of bolts required = $\frac{8.75}{38.5} = 0.227 \approx 1$ bolt

tie plate

no per $\frac{C1.7.1.28}{51}$, width = 300 mm

Eff. Depth = In distance b/n centroids of
main members
 $\therefore d = 300 - (2 \times 24.2)$

Overall $\Rightarrow d = 251.6$ mm

Overall depth = $d + (2 \times e)$

$= 251 + (2 \times 10)$

$= 331$ mm say 340 mm

thickness (t) $\neq \frac{1}{50} (300 - 2 \times 50)$

$\neq 4$ mm

say 6 mm thickness

Provide 340 mm overall depth and 6 mm thick tie plate one at the top end and another at the bottom end.

Design of column with Battens:

① Design of built-up column

Assume $f_{cd} = 150$ to 190 N/mm^2

② For built-up column assume f_{cd}

③ Take r_{min} as max. of r_{yy} and r_{zz}

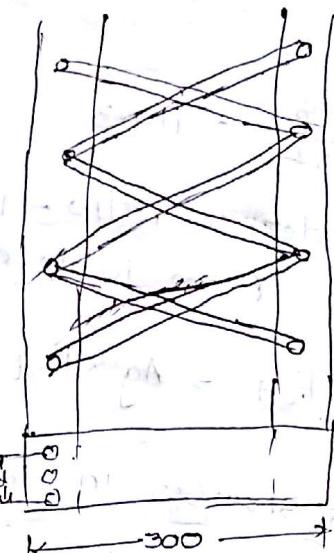
Find $\left(\frac{KL}{r}\right)_e = 1.1 \left(\frac{KL}{r}\right) \quad \left(\because \frac{C1.7.1.4}{51}\right)$

④ calculate f_{cd} and P_d

⑤ spacing of elements in the column

Equate I_{yy} to I_{zz} and increase the spacing to increase I_{yy}

⑥ Design of Battens: $\left(\frac{C1.7.1.8}{50}\right)$


⑦ el. 7.1.3 spacing of battens

⑧ 7.1.23 size of end and intermediate battens

⑨ 7.1.2.1 Design forces on battens

⑩ check for shear stress and bending stresses for end battens

and intermediate battens.

@connections - Should be designed to transmit both axial force and bending moment.

(E) No. of batten plates

(F) Real spacing of battens

& design a builtup column 9m long to carry a factored axial compressive load of 1100 kN. column is restrained in position but not in direction at both ends. Design the column with connecting systems or battens.

use two channels back-to-back. Design of built-up column

Given data, $P_u = 1100 \text{ kN}$

$L = 9 \text{ m}$

Effective length (KL) = $1.0L$
= 9 m

Assume $f_{cd} = 150 \text{ N/mm}^2$

Ag required = $\frac{P_u}{f_{cd}} = \frac{1100 \times 10^3}{150} = 7333.33 \text{ mm}^2$

Try 2ISMC 300 @ 351.2 N/mm having $A_g = 94564$
 $= 9198 \text{ mm}^2 (> 7333.33 \text{ mm}^2)$

Details

$r_{zz} = 118.1 \text{ mm}$

$I_{zz} = 6366 \times 10^4 \text{ mm}^4$

$c_{yy} = 23.6 \text{ mm}$

$r_{yy} = 261 \text{ mm}$

$I_{yy} = 310.8 \times 10^4 \text{ mm}^4$

$b_f = 90 \text{ mm}$

Slenderness ratio $\left(\frac{KL}{r_{min}} \right) = \frac{9 \times 10^3}{118.1} = 76.2$

As per $\frac{7.7.1.4}{51}$, $\left(\frac{KL}{r} \right)_e = 1.1 \left(\frac{KL}{r} \right)_o$
 $= 1.1 \times 76.2$
 $= 83.8$

Value For $\frac{KL}{r} = 83.8$, $f_y = 250 \text{ N/mm}^2$ For channel class-C buckling (Table-10/44)

From Table-9(C), $f_{cd} = 130.3 \text{ N/mm}^2$

$P_d = A_g f_{cd} = 9198 \times 130.3 \Rightarrow P_d = 1189 \text{ kN} (> 1100 \text{ kN})$

$P_d = (2 \times 4564) 130.3$

Hence safe

Arrangement and Spacing of channels:
ensuring the channels back-to-back to get the spacing b/w the channels. Equate I_{yy} to I_{zz} .

$$I_{yy} = I_{zz}$$

$$2[I_{Y,Y} + \alpha h^2] = 2 \times I_{ZZ}$$

$$\Rightarrow 2 \left[310.8 \times 10^4 + (4564 \times \left(\frac{5}{2} + 23.6 \right)^2) \right]$$

$$= 2 \times 6366 \times 10^4$$

$$\Rightarrow S = 183.1 \text{ mm}$$

To make $I_{yy} > I_{zz}$ increase s value

Take $s = 200 \text{ mm}$

Baffens : (see cl. 7.1.1.3/50)

Batters (or) plates provided at top end of column, others at bottom end of column & others uniformly at equal spacing.

$$\text{Minimum no of battens} = 2 + 1 = 3$$

Spacing of Battens

$$\frac{C}{r_y} < 0.1 \times \text{Slenderness ratio of } \\ < 0.1 \times 83.82 \\ < 58.67 \\ < \frac{25.1}{58.67} < 1531.4 \text{ mm}$$

$$\frac{C}{R_y} + 50 \Rightarrow C + 1305 \text{ mm} \quad (\text{See page - 51})$$

provide battens at a spacing of 1300 mm

size of End battens:

using flats for battens, using 20mm dia bolts for connection.

$d = 20\text{mm}$ $\rho = 1.5d_h + 1.5 \times 22 + 33\text{mm}$ say 35mm

$$d_h = 22 \text{ mm}$$

As per 7.7.2.3, $d \neq$ $\frac{1}{2}$ distance b/w centroids of main members

As per $\frac{7.7 \cdot 2.3}{51}$, $d \neq 17$ distance

d 4 247.2 mm

$$\text{overall Depth} = d + 2e$$

$$247.2 + 2 \times 35$$

= 317.2 mm sqy 320 mm

$$\text{width of batten} = 800 + 90 + 90 = \underline{380 \text{ mm}}$$

$$\text{thickness (E)} \neq \frac{1}{50} \times (55 + 200 + 55) \neq 6.2 \text{ mm say } 8 \text{ mm}$$

Hence provide 380 mm width, 320 mm overall depth and 8 mm thick end batten plates at the top end and other at the bottom end of the column.

$$\text{Max. Interm. Battens} = \frac{1}{4} \times (800 + 100 \times 3.6) = 340$$

$$\text{Max. Int. Battens} = \frac{1}{4} \times 340 = 85 \text{ (approx.)}$$

$$\text{Overall depth (at 1/4)} = 185.4 \text{ mm}$$

$$\text{Overall depth (at 1/4)} = 185.4 \text{ mm}$$

Thickness is same as end batten thickness i.e. 3mm
Hence provide 300mm width, 300mm overall depth and 3mm thick
Intermediate battens.

$$\text{on per cl. 7.1.2} \quad \text{Design of Battens}$$

$$\text{Transverse SF } (V_b) = 0.5\% \text{ of the total axial force}$$

$$\text{Transverse SF } (V_b) = \frac{0.5}{100} \times 1100$$

$$V_b = \frac{0.5 \times 1100}{100} = 5.5 \times 10^3 \text{ N} \quad \Rightarrow N_b = 5.5 \times 10^3 \text{ N} \quad \Rightarrow 5.5 \times 10^3 \times 1300 = 7.166 \times 10^3 \text{ N} \quad \text{BD } 57.66 \text{ KN}$$

$$V_b = \frac{V_c C}{N_b} = \frac{5.5 \times 10^3 \times 1300}{0.4 \times (551000 + 55)} = 8.9375 \times 10^6 \text{ N/mm}$$

$$\text{See Pg-11} \quad \text{Moment, } M = \frac{V_c C}{2 N} = \frac{5.5 \times 10^3 \times 1300}{2 \times 12} = 3.625 \times 10^6 \text{ Nmm}$$

check for stresses:

$$\text{For End battens, shear stress} = \frac{V_b}{c/g \text{ area}} = \frac{5.5 \times 10^3}{300 \times 8} = 0.1875 \text{ N/mm}^2$$

$$\text{End battens = width of side, } A = 300 \text{ mm}^2 \quad \frac{f_y}{f_y/f_s} = \frac{131.21}{131.21} = 1 \quad \text{Hence safe}$$

$$\text{Bending stress} = \frac{M}{Z} = \frac{3.625 \times 10^6}{1.5 \times \frac{1}{6} \times \frac{b d^3}{4} - \frac{b d^2}{4} \times \frac{d}{2}} = 81.25 \text{ N/mm}^2$$

$$= \frac{3.625 \times 10^6}{\left(\frac{8 \times 300}{6} \right)^3} = 81.25 \text{ N/mm}^2 \quad \frac{f_y}{f_y/f_s} = \frac{131.21}{131.21} = 1 \quad \text{Hence safe}$$

(i) for Intermediate battens,

$$\text{Shear stress} = \frac{V_b}{c/g \text{ area}} = \frac{5.5 \times 10^3}{800 \times 8} = 0.1125 \text{ N/mm}^2 \quad \frac{f_y}{f_y/f_s} = \frac{131.21}{131.21} = 1 \quad \text{Hence safe}$$

$$\text{Bending stress} = \frac{M}{Z} = \frac{3.625 \times 10^6}{\left(\frac{8 \times 560}{6} \right)^3} = 99.1 \text{ N/mm}^2 \quad \frac{f_y}{f_y/f_s} = \frac{131.21}{131.21} = 1 \quad \text{Hence safe}$$

connections: The connections should be designed to transmit shear and BM.

07/3/15 using 20 mm dia. bolts strength of bolt V_{dsf} in shear $\frac{f_u}{\sqrt{3} r_{mb}} (n_n A_{nb} + n_s A_{sb})$

In bearing, $V_{npb} = 2.5 k_b d t f_u$

$$d \leq 1.5d_h \\ \leq 1.5 \times 22 \\ \leq 33 \text{ mm say } 40 \text{ mm}$$

$$b \leq 2.5d \\ \leq 50 \text{ mm say}$$

$$K_b = \frac{e}{3d_o}, \frac{b}{3d_o} - 0.95, \frac{f_{ub}}{f_u} = 0.606, \frac{0.507}{0.507}, 0.97, 1.0$$

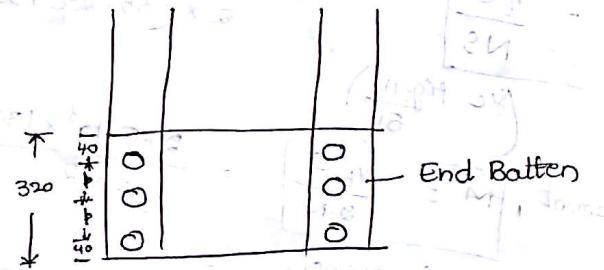
$$= 2.5 \times 0.507 \times 20 \times 8 \times \frac{410}{1.05}$$

$$= 66.52 \text{ kN}$$

$$= 45.27 \text{ kN}$$

$$V_b = 57.66 \text{ kN}$$

$$\therefore \text{Strength of bolt} = 45.27 \text{ kN}$$


\Rightarrow no. of bolts required $= \frac{57.66}{45.27} = 1.274$ say 3 bolts to accommodate for BM also.

$$\text{Each pitch} = \frac{320 - 8 \times 40}{2}$$

$$\Rightarrow p = 120 \text{ mm}$$

Shear to be resisted

$$\text{by each bolt} = \frac{57.66}{22.3 \text{ kN}} \\ = 19.22 \text{ kN}$$

BM to be resisted: Force in each bolt is due to shear = 19.22 kN

$$\text{if due to BM} = \frac{M \pi}{\frac{2}{3} \pi r^2} \text{ where } \pi \text{ is pitch}$$

$$= \frac{8.9375 \times 10^6 \times 100}{120^2 + 120^2}$$

$$= 37.84 \text{ kN}$$

$$\text{Resultant force on each bolt} = \sqrt{19.22^2 + 37.84^2}$$

$$= 41.9 \text{ kN} < \text{Strength of bolt (45.27 kN)}$$

Hence safe

$$\text{No. of batten plates required on each phase} = \frac{\text{Length of column}}{\text{batten spacing}} + 1$$

$$= \frac{9000}{1300} + 1$$

$$= 7.92 \text{ say } 8 \text{ batters}$$

$$\text{Revise the centre to centre distance of batters} = \frac{9 \times 10^3}{8-1} = 1285.7 < 1305 \text{ mm}$$

Provide 2 End Battens & 6 Intermediate battens on each face of the column and connect it with 3 # 20 dia. bolts with an edge distance of 40 mm & a pitch of 120 mm.

Mar.

had forced all conflicts in the partition of

Chapman et al. (2005) found that older adults with dementia had more difficulty with the visual search task than younger adults. This suggests that the visual search task is a good measure of cognitive function in older adults.

Met de belangstelling die veelal reeds bestaat voor de 26

High levels noted in most & examined by weight & color description
study used for rest of traps. Supplied them on a staff truck to within

Employee will be given the following stamp on

From the same specimen as the one described above the specimen is more robust and the abdomen is more bulky and the abdominal sternite is more widely separated from the epiphysis and the epiphysis is more widely separated from the anterior coxae.

Cost of paper

Office of Information and
Records Management and
the Office of the
Information Commissioner