
 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 1
BRANCH: CIVIL ENGINEERING

UNIT-6

Quality Management: Quality concepts, Software quality assurance, Software Reviews,

Formal technical reviews, Statistical Software quality Assurance, Software reliability.

➢ Quality Concepts

Variation control is the heart of quality control. A manufacturer wants to minimize the

variation among the products that are produced, even when doing something relatively simple

like duplicating diskettes. Surely, this cannot be a problem duplicating diskettes is a trivial

manufacturing operation, and we can guarantee that exact duplicates of the software are

always created.

Quality

Quality of design refers to the characteristics that designers specify for an item. The grade of

materials, tolerances, and performance specifications all contribute to the quality of design.

As higher-grade materials are used, tighter tolerances and greater levels of performance are

specified, the design quality of a product increases, if the product is manufactured according

to specifications.

Quality of conformance is the degree to which the design specifications are followed during

manufacturing. Again, the greater the degree of conformance, the higher is the level of

quality of conformance.

Quality Control

Variation control may be equated to quality control. But how do we achieve quality control?

Quality control involves the series of inspections, reviews, and tests used throughout the

software process to ensure each work product meets the requirements placed upon it. Quality

control includes a feedback loop to the process that created the work product. The

combination of measurement and feedback allows us to tune the process when the work

products created fail to meet their specifications. This approach views quality control as part

of the manufacturing process.

Quality control activities may be fully automated, entirely manual, or a combination of

automated tools and human interaction. A key concept of quality control is that all work

products have defined, measurable specifications to which we may compare the output of

each process. The feedback loop is essential to minimize the defects produced.

Quality Assurance

Quality assurance consists of the auditing and reporting functions of management. The goal

of quality assurance is to provide management with the data necessary to be informed about

product quality, thereby gaining insight and confidence that product quality is meeting its

goals. Of course, if the data provided through quality assurance identify problems, it is

management’s responsibility to address the problems and apply the necessary resources to

resolve quality issues.

Cost of Quality

The cost of quality includes all costs incurred in the pursuit of quality or in performing

quality-related activities. Cost of quality studies are conducted to provide a baseline for the

 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 2
BRANCH: CIVIL ENGINEERING

current cost of quality, identify opportunities for reducing the cost of quality, and provide a

normalized basis of comparison.

Quality costs may be divided into costs associated with prevention, appraisal, and failure.

Prevention costs include

• quality planning

• formal technical reviews

• test equipment

• training

Appraisal costs include activities to gain insight into product condition the “first time

through” each process. Examples of appraisal costs include

• in-process and interprocess inspection

• equipment calibration and maintenance

• testing

Failure costs are those that would disappear if no defects appeared before shipping a product

to customers. Failure costs may be subdivided into internal failure costs and external failure

costs. Internal failure costs are incurred when we detect a defect in our product prior to

shipment. Internal failure costs include

• rework

• repair

• failure mode analysis

External failure costs are associated with defects found after the product has been shipped to

the customer. Examples of external failure costs are

• complaint resolution

• product return and replacement

• help line support

• warranty work

➢ Software Quality Assurance(SQA):

Software quality assurance is a planned and systematic plan of all actions necessary to

provide adequate confidence that an item or product conforms to establish technical

requirements.

A set of activities designed to calculate the process by which the products are developed or

manufactured.

SQA Encompasses

o A quality management approach

o Effective Software engineering technology (methods and tools)

o Formal technical reviews that are tested throughout the software process

o A multitier testing strategy

 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 3
BRANCH: CIVIL ENGINEERING

o Control of software documentation and the changes made to it.

o A procedure to ensure compliances with software development standards

o Measuring and reporting mechanisms.

SQA Activities

Software quality assurance is composed of a variety of functions associated with two

different constituencies ? the software engineers who do technical work and an SQA group

that has responsibility for quality assurance planning, record keeping, analysis, and reporting.

Following activities are performed by an independent SQA group:

1. Prepares an SQA plan for a project: The program is developed during project

planning and is reviewed by all stakeholders. The plan governs quality assurance

activities performed by the software engineering team and the SQA group. The plan

identifies calculation to be performed, audits and reviews to be performed, standards

that apply to the project, techniques for error reporting and tracking, documents to be

produced by the SQA team, and amount of feedback provided to the software project

team.

2. Participates in the development of the project's software process description: The

software team selects a process for the work to be performed. The SQA group reviews

the process description for compliance with organizational policy, internal software

standards, externally imposed standards (e.g. ISO-9001), and other parts of the

software project plan.

3. Reviews software engineering activities to verify compliance with the defined

software process: The SQA group identifies, reports, and tracks deviations from the

process and verifies that corrections have been made.

4. Audits designated software work products to verify compliance with those

defined as a part of the software process: The SQA group reviews selected work

products, identifies, documents and tracks deviations, verify that corrections have

been made, and periodically reports the results of its work to the project manager.

5. Ensures that deviations in software work and work products are documented

and handled according to a documented procedure: Deviations may be

encountered in the project method, process description, applicable standards, or

technical work products.

6. Records any noncompliance and reports to senior management: Non- compliance

items are tracked until they are resolved.

 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 4
BRANCH: CIVIL ENGINEERING

➢ Software Review

Software review is an important part of "Software Development Life Cycle (SDLC)" that

assists software engineers in validating the quality, functionality, and other vital features and

components of the software. As mentioned above, it is a complete process that involves

testing the software product and ensuring that it meets the requirements stated by the client.

It is systematic examination of a document by one or more individuals, who work together to

find & resolve errors and defects in the software during the early stages of Software

Development Life Cycle (SDLC). Usually performed manually, software review is used to

verify various documents like requirements, system designs, codes, "test plans", & "test

cases".

Why is Software Review Important?

The reasons that make software review an important element of software development

process are numerous. It is one such methodology that offers an opportunity to the

development team & the client, to get clarity on the project as well as its requirements. With

the assistance of software review, the team can verify whether the software is developed as

per the requested requirements or not, and make the necessary changes before its release in

the market. Other important reasons for Software Review are:

• It improves the productivity of the development team.

• Makes the process of testing time & cost effective, as more time is spent on testing

the software during the initial development of the product.

• Fewer defects are found in the final software, which helps reduce the cost of the

whole process.

• The reviews provided at this stage are found to be cost effective, as they are identified

at the earlier stage, as the cost of rectifying a defect in the later stages would be much

more than doing it in the initial stages.

• In this process of reviewing software, often we train technical authors for defect

detection process as well as for "defect prevention process".

https://www.professionalqa.com/software-development-life-cycle
https://www.professionalqa.com/test-plan
https://www.professionalqa.com/test-case
https://www.professionalqa.com/test-case
https://www.professionalqa.com/defect-analysis-and-prevention

 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 5
BRANCH: CIVIL ENGINEERING

• It is only at this stage the inadequacies are eliminated.

• Elimination of defects or errors can benefit the software to a great extent. Frequent

check of samples of work and identification of small time errors can lead to low error

rate.

• As a matter of fact, this process results in dramatic reduction of time taken in

producing a technically sound document.

Types of Software Reviews:

There are mainly three types of software reviews, all of which are conducted by different

members of the team who evaluate various aspects of the software. Hence, the types of

software review are:

1. Software Peer Review:

Peer review is the process of evaluating the technical content and quality of the

product and it is usually conducted by the author of the work product, along with

some other developers. According to "Capacity Maturity Model", the main purpose

of peer review is to provide “a disciplined engineering practise for detecting or

correcting defects in the software artifacts, preventing their leakage into the field

operations”. In short, peer review is performed in order to determine or resolve the

defects in the software, whose quality is also checked by other members of the team.

Types of Peer Review:

o "Code Review": To fix mistakes and to remove vulnerabilities from the

software product, systematic examination of the computer source code is

conducted, which further improves the quality & security of the product.

o "Pair Programming": This is a type of code review, where two programmers

work on a single workstation and develop a code together.

o Informal: As suggested by its name, this is an informal type of review, which

is extremely popular and is widely used by people all over the world. Informal

https://www.professionalqa.com/capability-maturity-model
https://www.professionalqa.com/code-review
https://www.professionalqa.com/pair-programming

 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 6
BRANCH: CIVIL ENGINEERING

review does not require any documentation, "entry criteria", or a large group

of people. It is a time saving process that is not documented.

o "Walkthrough": Here, a designer or developer lead a team of software

developers to go through a software product, where they ask question and

make necessary comments about various defects & errors. This process differs

from "software inspection" and technical review in various aspects.

o Technical Review: During the process of technical review a team of qualified

personnel review the software and examine its suitability to define its intended

use as well as to identify various discrepancies.

o Inspection: This is a formal type of peer review, wherein experienced &

qualified individuals examine the software product for bugs and defects using

a defined process. Inspection helps the author improve the quality of the

software.

2. Software Management Review:

These reviews take place in the later stages by the management representatives. The

objective of this type of review is to evaluate the work status. Also, on the basis of

such reviews decisions regarding downstream activities are taken.

3. Software Audit Reviews:

"Software Audit" review or software review is a type of external review, wherein

one or more auditors, who are not a part of the development team conduct an

independent examination of the software product and its processes to assess their

compliance with stated specifications, standards, and other important criterion's. This

is done by managerial level people.

➢ Formal Technical Reviews

https://www.professionalqa.com/entry-and-exit-criteria
https://www.professionalqa.com/structured-walkthrough
https://www.professionalqa.com/software-inspection
https://www.professionalqa.com/audit-in-software-testing

 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 7
BRANCH: CIVIL ENGINEERING

A formal technical review is a software quality assurance activity performed by software

engineers (and others). The objectives of the FTR are

(1) to uncover errors in function, logic, or implementation for any representation of the

software;

(2) to verify that the software under review meets its requirements;

(3) to ensure that the software has been represented according to predefined standards;

(4) to achieve software that is developed in a uniform manner; and

(5) to make projects more manageable.

The FTR is actually a class of reviews that includes walkthroughs, inspections, round-robin

reviews and other small group technical assessments of software. Each FTR is conducted as a

meeting and will be successful only if it is properly planned, controlled, and attended. In the

sections that follow, guidelines similar to those for a walkthrough are presented as a

representative formal technical review.

The Review Meeting

Regardless of the FTR format that is chosen, every review meeting should abide by the

following constraints:

• Between three and five people (typically) should be involved in the review.

• Advance preparation should occur but should require no more than two hours of work for

each person.

• The duration of the review meeting should be less than two hours.

At the end of the review, all attendees of the FTR must decide whether to (1) accept the

product without further modification, (2) reject the product due to severe errors (once

corrected, another review must be performed), or (3) accept the product provisionally (minor

errors have been encountered and must be corrected, but no additional review will be

required). The decision made, all FTR attendees complete a sign-off, indicating their

participation in the review and their concurrence with the review team's findings.

Review Reporting and Record Keeping

During the FTR, a reviewer (the recorder) actively records all issues that have been raised.

These are summarized at the end of the review meeting and a review issues list is produced.

In addition, a formal technical review summary report is completed.

A review summary report answers three questions:

1. What was reviewed?

2. Who reviewed it?

3. What were the findings and conclusions?

The review summary report is a single page form (with possible attachments). It becomes

part of the project historical record and may be distributed to the project leader and other

interested parties.

The review issues list serves two purposes:

(1) To identify problem areas within the product and

(2) To serve as an action item checklist that guides the producer as corrections are made. An

issues list is normally attached to the summary report.

 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 8
BRANCH: CIVIL ENGINEERING

It is important to establish a follow-up procedure to ensure that items on the issues list have

been properly corrected. Unless this is done, it is possible that issues raised can “fall between

the cracks.” One approach is to assign the responsibility for follow up to the review leader.

Review Guidelines

Guidelines for the conduct of formal technical reviews must be established in advance,

distributed to all reviewers, agreed upon, and then followed. A review that is uncontrolled can

often be worse that no review at all. The following represents a minimum set of guidelines

for formal technical reviews:

1. Review the product, not the producer.

An FTR involves people and egos. Conducted properly, the FTR should leave all

participants with a warm feeling of accomplishment. Conducted improperly, the FTR can

take on the aura of an inquisition. Errors should be pointed out gently; the tone of the

meeting should be loose and constructive; the intent should not be to embarrass or

belittle. The review leader should conduct the review meeting to ensure that the proper

tone and attitude are maintained and should immediately halt a review that has gotten out

 of control.

2. Set an agenda and maintain it. One of the key maladies of meetings of all types is drift.

An FTR must be kept on track and on schedule. The review leader is chartered with the

responsibility for maintaining the meeting schedule and should not be afraid to nudge people

when drift sets in.

3. Limit debate and rebuttal. When an issue is raised by a reviewer, there may not be

universal agreement on its impact. Rather than spending time debating the question, the issue

should be recorded for further discussion off-line.

4. Enunciate problem areas, but don't attempt to solve every problem noted. A review is

not a problem-solving session. The solution of a problem can often be accomplished by the

producer alone or with the help of only one other individual. Problem solving should be

postponed until after the review meeting.

5. Take written notes. It is sometimes a good idea for the recorder to make notes on a wall

board, so that wording and priorities can be assessed by other reviewers as information is

recorded.

6. Limit the number of participants and insist upon advance preparation. Two heads are

better than one, but 14 are not necessarily better than 4. Keep the number of people involved

to the necessary minimum. However, all review team members must prepare in advance.

Written comments should be solicited by the review leader (providing an indication that the

reviewer has reviewed the material).

7. Develop a checklist for each product that is likely to be reviewed. A checklist helps the

review leader to structure the FTR meeting and helps each reviewer to focus on important

issues. Checklists should be developed for analysis, design, code, and even test documents.

8. Allocate resources and schedule time for FTRs. For reviews to be effective, they should

 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 9
BRANCH: CIVIL ENGINEERING

be scheduled as a task during the software engineering process. In addition, time should be

scheduled for the inevitable modifications that will occur as the result of an FTR.

9. Conduct meaningful training for all reviewers. To be effective all review participants

should receive some formal training. The training should stress both process-related issues

and the human psychological side of reviews. Freedman and Weinberg estimate a one-month

learning curve for every 20 people who are to participate effectively in reviews.

10. Review your early reviews. Debriefing can be beneficial in uncovering problems with

the review process itself. The very first product to be reviewed should be the review

guidelines themselves.

➢ Statistical Software Quality Assurance (SSQA):

Software quality can be achieved through competent analysis, design, coding, and testing, as

well as through the application of formal technical reviews, a testing strategy, better control

of software work products and the changes made to them, and the application of accepted

software engineering standards. In addition, quality can be defined in terms of a broad array

of quality factors and measured (indirectly) using a variety of indices and metrics.

Statistical software quality assurance in software engineering involves tracing each defect to

its underlying cause, isolating the vital few causes, and moving to correct them.

Steps required to perform statistical SQA :

1. Information about software defects is collected and categorized.

2. An attempt is made to trace each defect to its underlying cause (e.g., non-conformance

to specifications, design error, violation of standards, poor communication with the

customer).

3. Using the Pareto principle (80 percent of the defects can be traced to 20 percent of all

possible causes), isolate the 20 percent (the "vital few").

4. Once the vital few causes have been identified, move to correct the problems that have

caused the defects.

This relatively simple concept represents an important step towards the creation o: an

adaptive software engineering process in which changes are made to improve those elements

of the process that introduce error.

A Generic Example:

To illustrate the use of statistical methods for software engineering work, assume that a

software engineering organization collects information on errors and defects for a period of

one year. Some of the errors are uncovered as software is being developed. Others (defects)

are encountered after the software has been released to its end users. Although hundreds of

different problems are uncovered, all can be tracked to one (or more) of the following causes:

 Incomplete or erroneous specifications (IES)

 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 10
BRANCH: CIVIL ENGINEERING

  Misinterpretation of customer communication (MCC)

 Intentional deviation from specifications (IDS)

 Violation of programming standards (VPS)

 Error in data representation (EDR)

 Inconsistent component interface (ICI)

 Error in design logic (EDL)

  Incomplete or erroneous testing (IET)

  Inaccurate or incomplete documentation (IID)

 Error in programming language translation of design (PLT)

 Ambiguous or inconsistent human/computer interface (HCI)

 Miscellaneous (MIS)

To apply statistical SQA, the above table is built. The table indicates that IES, MCC, and

EDR are the vital few causes that account for 53 percent of all errors. It should be noted,

however, that IES, EDR, PLT, and EDL would be selected as the vital few causes if only

serious errors are considered. Once the vital few causes are determined, the software

engineering organization can begin corrective action.

 For example, to correct MCC, you might implement requirements gathering techniques to

improve the quality of customer communication and specifications. To improve EDR, you

might acquire tools for data modelling and perform more severe data design reviews.

Table: Data Collection for Statistical Software Quality Assurance (SSQA)

 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 11
BRANCH: CIVIL ENGINEERING

It is important to note that corrective action focuses primarily on the vital few. As the vital

few causes are corrected, new candidates pop to the top of the stack. Statistical quality

assurance techniques for software have been shown to provide substantial quality

improvement.

The application of the statistical SQA and the Pareto principle can be summarized in a single

sentence: Spend your time focusing on things that really matter, but first be sure that you

understand what really matters.

Six Sigma for software Engineering:

Six Sigma is the most widely used strategy for statistical quality assurance in industry today.

Originally popularized by Motorola in the 1980s, the Six Sigma strategy “is a rigorous and

disciplined methodology that uses data and statistical analysis to measure and improve a

company’s operational performance by identifying and eliminating defects’ in manufacturing

and service-related processes”. The term Six Sigma is derived from six standard deviations.

The Six Sigma methodology defines three core steps and two additional important steps:

❖ Define customer requirements and deliverables and project goals via well-defined methods of

customer communication.
❖ Measure the existing process and its output to determine current quality performance.
❖ Analyze defect metrics and determine the vital few causes.
❖ Improve the process by eliminating the root causes of defects.
❖ Control the process to ensure that future work does not reintroduce the causes of defects.
❖ Design the process to avoid the root causes of defects and to meet customer requirements.
❖ Verify that the process model will, in fact, avoid defects and meet customer requirements.

➢ Software reliability:

Software reliability is defined in statistical term as “the probability of failure-free

operation of a computer program in a specified environment for a specified

time”. Reliability is a customer-oriented view of software quality.

 It relates to operation rather than design of the program, and hence it is dynamic

rather than static.

 Whenever software reliability is discussed, a pivotal question arises: What is meant

 by the term failure? In the context of any discussion of software quality and reliabil-

ity, failure is non-conformance to software requirements. Yet, even within this defin-

ition, there are gradations. Failures can be only annoying or catastrophic. One failure

can be corrected within seconds while another requires weeks or even months to

correct. Complicating the issue even further, the correction of one failure may in fact

result in the introduction of other errors that ultimately result in other failures.

❖ Measures of Reliability and Availability:

1. Mean time to failure (MTTF):

● MTTF is the time between two successive failures, averaged over a large number of failures.

 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 12
BRANCH: CIVIL ENGINEERING

 ● To measure MTTF, we can record the failure data for n failures.

 ● It is important to note that only run time is considered in the time measurements.

2. Mean time to repair (MTTR):

● Once failure occurs, sometime is required to fix the error.

● MTTR measures the average time it takes to track the errors causing the failure and to fix them.

 3. Mean time between failure (MTBF):

 ● The MTTF and MTTR metrics can be combined to get the MTBF metric: MTBF=MTTF+MTTR.

● Thus, MTBF of 300 hours indicates that once a failure occurs, the next failure is expected after 300

hours.

Early work in software reliability attempted to extrapolate the mathematics of hard-ware

reliability theory to the prediction of software reliability. Most hardware- related reliability

models are predicated on failure due to wear rather than failure due to design defects. In

hardware, failures due to physical wear the effects of temperature, corrosion, shock) are more

likely than a design-related failure. Unfortunately, the opposite is true for software. In fact, all

software failures can be traced to design or implementation problems.

There has been debate over the relationship between key concepts in hardware reliability and

their applicability to software (e.g., [LIT89], [ROO90]). Although an irrefutable link has yet

be established, it is worthwhile to consider a few simple concepts that apply to both system

elements.

If we consider a computer-based system, a simple measure of reliability is mean-time-

between-failure (MTBF), where

MTBF = MTTF + MTTR

The acronyms MTTF and MTTR are mean-time-to-failure and mean-time-to-repair,

respectively.

In addition to a reliability measure, we must develop a measure of availability.

Software availability is the probability that a program is operating according to requirements

at a given point in time and is defined as

Availability = [MTTF/(MTTF + MTTR)] 100%

The MTBF reliability measure is equally sensitive to MTTF and MTTR. The availability

measure is somewhat more sensitive to MTTR, an indirect measure of the maintainability of

software.

❖ Software Safety:

Before software was used in safety critical systems, they were often controlled by

conventional (nonprogrammable) mechanical and electronic devices. System safety

techniques are designed to cope with random failures in these [nonprogrammable] systems.

Human design errors are not considered since it is assumed that all faults caused by human

errors can be avoided completely or removed prior to delivery and operation.

 NBKR INSTITUTE OF SCIENCE AND TECHNOLOGY, Vidyanagar

B.TECH (R-20)
III YEAR-II SEM SUBJECT: SOFTWARE ENGINEERING (20CS3201) Page 13
BRANCH: CIVIL ENGINEERING

Software safety is a software quality assurance activity that focuses on the identification and

assessment of potential hazards that may affect software negatively and cause an entire

system to fail.

A modeling and analysis process is conducted as part of software safety. Initially, hazards are

identified and categorized by criticality and risk. For example, some of the hazards associated

with a computer-based cruise control for an automobile might be

• causes uncontrolled acceleration that cannot be stopped

• does not respond to depression of brake pedal (by turning off)

• does not engage when switch is activated

• slowly loses or gains speed

Once these system-level hazards are identified, analysis techniques are used to assign severity

and probability of occurrence. To be effective, software must be analysed in the context of

the entire system. For example, a subtle user input error (people are system components) may

be magnified by a software fault to produce control data that improperly positions a

mechanical device. If a set of external environmental conditions are met (and only if they are

met), the improper position of the mechanical device will cause a disastrous failure.

	 Software Quality Assurance(SQA):
	SQA Encompasses
	SQA Activities
	 Software Review
	Why is Software Review Important?
	Types of Software Reviews:
	Types of Peer Review:

	Steps required to perform statistical SQA :

