DATA ENGINEERING
LECTURE NOTES

N.B.K.R.INSTITUTE OF SCIENCE &TECHNOLOGY,
VIDYANAGAR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DATA ENGINEERING

LECTURE NOTES
UNIT-I11

S VORK S WORSHIP ™2

1
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

SUBJECT: DATA ENGINEERING
UNIT-

Designing Good Data Architecture: Enterprise Architecture, Data Architecture, Principles
of Good Data Architecture, Major Architecture Concepts.

Data Generation in Source Systems: Sources of Data, Files and Unstructured Data, APIs,
Application Databases (OLTP), OLAP, Change Data Capture, Logs, Database Logs, CRUD,
Source System Practical Details.

What is Data Architecture?
Data architecture is a framework that describes how an organization manages its data, including how

it's collected, stored, and used. It's a blueprint for an organization's data assets and data management resources,
and it's made up of models, rules, and standards.
Data architecture is important because it: Ensures data quality and security, Aligns data processes with

business goals, Supports strategic initiatives like Al and business intelligence, Avoids redundant data storage,

and Enables new applications.

The tools and systems used
to store and analyze data

The infrastructure that houses
an organization’s data

Data
architecture
relates to:

The framework of related
logistics and systems

The organization’s
wider infrastructure

The policies and tools used
to secure data assets.

Data architects design data architectures to meet business and technology requirements, while also
ensuring data security and compliance with regulations. Data architectures can vary depending on the business's
goals and needs. For example, a financial data architecture might focus on collecting, storing, and managing

high-velocity data, while a healthcare data architecture might focus on protecting patient health records.

2
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

3.1. Enterprise Data Architecture

Enterprise architecture has many subsets, including business, technical, application, and data
(Figure below). As such, many frameworks and resources are devoted to enterprise architecture. In

truth, architecture is a surprisingly controversial topic.

Enterprise architecture
Business Technical Application Data
architecture architecture architecture architecture

Figure. Data architecture is a subset of enterprise architecture
TOGAF’s definition: TOGAF is The Open Group Architecture Framework, a standard of The Open Group. It’s

touted as the most widely used architecture framework today. Here’s the TOGAF definition:

The term “enterprise” in the context of “enterprise architecture” can denote an entire enterprise—
encompassing all of its information and technology services, processes, and infrastructure—or a specific domain
within the enterprise. In both cases, the architecture crosses multiple systems, and multiple functional groups
within the enterprise.

Gartner’s definition: Gartner is a global research and advisory company that produces research articles and
reports on trends related to enterprises. Among other things, it is responsible for the (in)famous Gartner Hype
Cycle. Gartner’s definition is as follows:

Enterprise architecture (EA) is a discipline for proactively and holistically leading enterprise responses

to disruptive forces by identifying and analyzing the execution of change toward desired business vision and
outcomes. EA delivers value by presenting business and IT leaders with signature-ready recommendations for
adjusting policies and projects to achieve targeted business outcomes that capitalize on relevant business
disruptions.
EABOK’s definition: EABOK is the Enterprise Architecture Book of Knowledge, an enterprise architecture
reference produced by the MITRE Corporation. EABOK was released as an incom- plete draft in 2004 and has
not been updated since. Though seemingly obsolete, EABOK is frequently referenced in descriptions of
enterprise architecture; we found many of its ideas helpful while writing this book. Here’s the EABOK
definition:

Enterprise Architecture (EA) is an organizational model; an abstract representation of an Enterprise
that aligns strategy, operations, and technology to create a roadmap for success.

Our definition: Enterprise architecture is the design of systems to support change in the enterprise, achieved by
flexible and reversible decisions reached through careful evaluation of trade-offs.

We discuss each theme at length in this section and then make the definition more concrete in the latter
part of the chapter by giving various examples of data architecture.

Decisions must be reversible and flexible for two reasons. First of all, it is impossible to forecast the
future because the world is always changing. Reversible choices enable you to modify your direction when
circumstances change and you learn new facts. Second, as organisations expand, there is a natural tendency for

3
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES
business ossification to occur. By lowering the risk involved in a choice, a culture of reversible decisions aids in
overcoming this inclination.

One-way and two-way doors are credited to Jeff Bezos.. Reversing a decision that is one-way is nearly
impossible. For instance, Amazon had the option of closing AWS or selling it. After taking such a step, it would
be extremely difficult for Amazon to re-establish a public cloud with the same market position. On the other
hand, a two-way door is an easily reversible decision: you walk through and proceed if you like what you see in
the room or step back through the door if you don’t. Amazon might decide to require the use of DynamoDB for
a new micro- services database. If this policy doesn’t work, Amazon has the option of reversing it and
refactoring some services to use other databases. Since the stakes attached to each reversible decision (two-way
door) are low, organizations can make more decisions, iterating, improving, and collecting data rapidly.

Change management is closely related to reversible decisions and is a central theme of enterprise
architecture frameworks. Even with an emphasis on reversible decisions, enterprises often need to undertake
large initiatives.

Architects do more than just sketch up IT procedures and hazily envision a far-off, ideal future; they
actively address business issues and generate new opportunities. Technical solutions exist to serve corporate
objectives rather than for their own sake. Architects pinpoint issues with the current state (poor data quality,
scalability constraints, financially unsuccessful business segments), specify ideal future states (agile data-quality
enhancement, scalable cloud data solutions, enhanced business processes), and bring initiatives to life by
carrying out tiny, tangible steps. It is worth restating:

Technical solutions exist not for their own sake but in support of business goals.

3.2. Data Architecture

Data architecture is a subset of enterprise architecture, inheriting its properties: processes, strategy,
change management, and evaluating trade-offs. Here are a couple of definitions of data architecture that
influence our definition.

TOGAF’s definition: A description of the structure and interaction of the enterprise’s major types and sources
of data, logical data assets, physical data assets, and data management resources.
DAMA'’s definition: The DAMA DMBOK defines data architecture as follows:

Identifying the data needs of the enterprise (regardless of structure) and designing and maintaining the
master blueprints to meet those needs. Using master blueprints to guide data integration, control data assets, and
align data investments with business strategy.

Our definition: Data architecture is the design of systems to support the evolving data needs of an enterprise,
achieved by flexible and reversible decisions reached through a careful evaluation of trade-offs.

The data engineering life-cycle is a subset of the data life-cycle; data engineering architecture is a
subset of general data architecture.

The systems and frameworks that comprise the essential components of the data engineering lifecycle
are known as data engineering architecture. The terms data architecture and data engineering architecture will be
used interchangeably.

You should also be aware of the operational and technical components of data architecture (Figure
below). The functional requirements of what must occur in relation to people, processes, and technology are all
included in operational architecture. What business operations, for instance, does the data support? How is data

4
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES
quality managed by the company? What is the minimum amount of time that must pass between the production
of the data and its query ability? Throughout the data engineering lifecycle, technical architecture describes how
data is ingested, stored, transformed, and served. For example, how would you transfer 10 TB of data per hour

to your data lake from a source database? To put it briefly, technical architecture explains how things will be

done, while operational architecture outlines what must be done.

Data architecture

How

What

Figure. Operational and technical data architecture
“Good” Data Architecture: Never shoot for the best architecture, but rather the least worst architecture.

According to Grady Booch, “Architecture represents the significant design decisions that shape a
system, where significant is measured by cost of change.” Data architects aim to make significant decisions that
will lead to good architecture at a basic level.

Good data architecture serves business requirements with a common, widely reusable set of building
blocks while maintaining flexibility and making appropriate trade-offs. Bad architecture is authoritarian and
tries to cram a bunch of one-size-fits-all decisions into a big ball of mud.

Good data architecture is built on agility, which recognises that the world is changing. A well-designed
data architecture is adaptable and simple to maintain. It varies in reaction to company shifts as well as new
procedures and technology that could eventually yield even greater value. Data use cases and businesses are
constantly changing. The data space is changing at an accelerated rate, and the world is dynamic. The data
architecture that worked effectively for you last year might not be enough for today, much less next year.

Bad data architecture is tightly coupled, rigid, overly centralized, or uses the wrong tools for the job,
hampering development and change management. Ideally, by designing architecture with reversibility in mind,
changes will be less costly.

The undercurrents of the data engineering lifecycle form the foundation of good data architecture for
companies at any stage of data maturity. Again, these undercurrents are security, data management, DataOps,
data architecture, orchestration, and software engineering.

Good data architecture is a living, breathing thing. It’s never finished. In fact, per our definition,
change and evolution are central to the meaning and purpose of data architecture. Let’s now look at the

principles of good data architecture.

3.3. Principles of Data Architecture

The AWS Well-Architected Framework consists of six pillars:
Operational excellence
Security
Reliability
Performance efficiency
Cost optimization
Sustainability

5
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

Google Cloud’s Five Principles for Cloud-Native Architecture are as follows:

Design for automation.

a
b. Be smart with state.

c. Favor managed services.
d. Practice defense in depth.
e. Always be architecting.

We advise you to carefully study both frameworks, identify valuable ideas, and deter- mine points of
disagreement. We’d like to expand or elaborate on these pillars with these principles of data engineering
architecture:

1. Choose common components wisely.

. Plan for failure.

. Architect for scalability.

. Architecture is leadership.

. Always be architecting.

. Build loosely coupled systems.
. Make reversible decisions.

. Prioritize security.

9. Embrace FinOps.

Principle 1: Choose Common Components Wisely

Selecting common elements and procedures that can be applied broadly throughout an organisation is
one of a data engineer's main responsibilities. Common elements build a fabric that promotes teamwork and
dismantles silos when architects make wise decisions and exercise good leadership. Together with shared
knowledge and abilities, common components allow for agility both inside and between teams.

Common components can be anything that has broad applicability within an organization. Common
components include object storage, version-control systems, observability, monitoring and orchestration
systems, and processing engines.

Common components should be accessible to everyone with an appropriate use case, and teams are
encouraged to rely on common components already in use rather than reinventing the wheel.

Common components must support robust permissions and security to enable sharing of assets among
teams while preventing unauthorized access.

Cloud platforms are an ideal place to adopt common components. For example, compute and storage
separation in cloud data systems allows users to access a shared storage layer (most commonly object storage)
using specialized tools to access and query the data needed for specific use cases.

Principle 2: Plan for Failure

Modern hardware is highly robust and durable. Even so, any hardware component will fail, given
enough time. To build highly robust data systems, you must consider failures in your designs. Here are a few
key terms for evaluating failure scenarios.

Availability: The percentage of time an IT service or component is in an operable state.
Reliability: The system’s probability of meeting defined standards in performing its intended function during a

specified interval.

6
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

Recovery time objective: The maximum acceptable time for a service or system outage. The recovery time
objective (RTO) is generally set by determining the business impact of an outage. An RTO of one day might be
fine for an internal reporting system. A website outage of just five minutes could have a significant adverse
business impact on an online retailer.
Recovery point objective: The acceptable state after recovery. In data systems, data is often lost during an
outage. In this setting, the recovery point objective (RPO) refers to the maximum acceptable data loss.
Principle 3: Architect for Scalability

Scalability in data systems encompasses two main capabilities.

First, scalable systems can scale up to handle significant quantities of data. We might need to spin up a
large cluster to train a model on a petabyte of customer data or scale out a streaming ingestion system to handle
a transient load spike. Our ability to scale up allows us to handle extreme loads temporarily.

Second, scalable systems can scale down. Once the load spike ebbs, we should automatically remove
capacity to cut costs. An elastic system can scale dynamically in response to load, ideally in an automated
fashion.

Some scalable systems can also scale to zero: they shut down completely when not in use. Once the
large model-training job completes, we can delete the cluster. Many ser- verless systems (e.g., serverless
functions and serverless online analytical processing, or OLAP, databases) can automatically scale to zero.

Keep in mind that using improper scaling techniques might lead to expensive and too complex systems.
An application might be better served by a simple relational database with a single failover node rather than a
sophisticated cluster configuration. To find out if your database architecture is suitable, measure your current
load, project load spikes, and project load over the next few years. Your start up should have additional
resources available to redesign for scalability if it expands far more quickly than expected.

Principle 4: Architecture Is Leadership

Data architects are responsible for technology decisions and architecture descrip- tions and
disseminating these choices through effective leadership and training. Data architects should be highly
technically competent but delegate most individual contributor work to others. Strong leadership skills
combined with high technical competence are rare and extremely valuable. The best data architects take this
duality seriously.

Returning to the notion of technical leadership, Martin Fowler describes a specific archetype of an
ideal software architect, well embodied in his colleague Dave Rice:

In many ways, the most important activity of Architectus Oryzus is to mentor the development
team, to raise their level so they can take on more complex issues. Improving the development team’s
ability gives an architect much greater leverage than being the sole decision-maker and thus running the
risk of being an architectural bottleneck.

Principle 5: Always Be Architecting

This principle directly from Google Cloud’s Five Principles for Cloud Native Architecture. Data
architects don’t serve in their role simply to maintain the existing state; instead, they constantly design new and
exciting things in response to changes in business and technology. Per the EABOK, an architect’s job is to

develop deep knowledge of the baseline architecture (current state), develop a target architecture, and map out a

sequencing plan to determine priorities and the order of architecture changes.

;
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

Principle 6: Build Loosely Coupled Systems

When the architecture of the system is designed to enable teams to test, deploy, and change systems
without dependencies on other teams, teams require little communication to get work done. In other words, both
the architecture and the teams are loosely coupled.
In 2002, Bezos wrote an email to Amazon employees that became known as the Bezos APl Mandate:

a. All teams will henceforth expose their data and functionality through service interfaces.

b. Teams must communicate with each other through these interfaces.

c. There will be no other form of interprocess communication allowed: no direct linking, no
direct reads of another team’s data store, no shared-memory model, no back-doors
whatsoever. The only communication allowed is via service inter- face calls over the network.
It doesn’t matter what technology they use. HTTP, Corba, Pubsub, custom protocols—doesn’t
matter.

All service interfaces, without exception, must be designed from the ground up to be
externalizable. That is to say, the team must plan and design to be able to expose the interface
to developers in the outside world. No exceptions.

For software architecture, a loosely coupled system has the following properties:

1. Systems are broken into many small components.

2. These systems interface with other services through abstraction layers, such as a messaging
bus or an API. These abstraction layers hide and protect internal details of the service, such as
a database backend or internal classes and method calls.

As a consequence of property 2, internal changes to a system component don’t require
changes in other parts. Details of code updates are hidden behind stable APIs. Each piece can
evolve and improve separately.
As a consequence of property 3, there is no waterfall, global release cycle for the whole
system. Instead, each component is updated separately as changes and improvements are
made.
Notice that we are talking about technical systems. We need to think bigger. Let’s translate these technical
characteristics into organizational characteristics:

1. Many small teams engineer a large, complex system. Each team is tasked with engineering,

maintaining, and improving some system components.
These teams publish the abstract details of their components to other teams via API
definitions, message schemas, etc. Teams need not concern themselves with other teams’
components; they simply use the published APl or message specifications to call these
components. They iterate their part to improve their performance and capabilities over time.
They might also publish new capabilities as they are added or request new stuff from other
teams. Again, the latter hap- pens without teams needing to worry about the internal technical
details of the requested features. Teams work together through loosely coupled

communication.

8
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

As a consequence of characteristic 2, each team can rapidly evolve and improve its component
independently of the work of other teams.

Specifically, characteristic 3 implies that teams can release updates to their components with
minimal downtime. Teams release continuously during regular working hours to make code
changes and test them.

Principle 7: Make Reversible Decisions

The data landscape is changing rapidly. Today’s hot technology or stack is tomorrow’s afterthought.
Popular opinion shifts quickly. You should aim for reversible decisions, as these tend to simplify your
architecture and keep it agile.

Principle 8: Prioritize Security

Every data engineer must assume responsibility for the security of the systems they build and maintain.

We focus now on two main ideas:

a. Zero-trust security

b. Shared responsibility security model.
These align closely to a cloud-native architecture.
Hardened-perimeter and zero-trust security model: To define zero-trust security, it’s helpful to start by
understanding the traditional hard-perimeter security model and its limitations, as detailed in Google Cloud’s
Five Principles:

Traditional architectures place a lot of faith in perimeter security, crudely a hard- ened network
perimeter with “trusted things” inside and “untrusted things” outside. Unfortunately, this approach has
always been vulnerable to insider attacks, as well as external threats such as spear phishing.

The shared responsibility model: Amazon emphasizes the shared responsibility model, which divides security
into the security of the cloud and security in the cloud. AWS is responsible for the security of the cloud:
AWS is responsible for protecting the infrastructure that runs AWS services in the AWS Cloud. AWS

also provides you with services that you can use securely.

AWS users are responsible for security in the cloud:

Your responsibility is determined by the AWS service that you use. You are also responsible for other
factors including the sensitivity of your data, your organization’s requirements, and applicable laws and
regulations.

Data engineers as security engineers: In the corporate world today, a command-and-control approach to
security is quite common, wherein security and networking teams manage perimeters and general security
practices. The cloud pushes this responsibility out to engineers who are not explicitly in security roles. Because
of this responsibility, in conjunction with more general erosion of the hard security perimeter, all data engineers
should consider themselves security engineers.

Principle 9: Embrace FinOps

FinOps is an evolving cloud financial management discipline and cultural practice that enables
organizations to get maximum business value by helping engineering, finance, technology, and business teams
to collaborate on data-driven spending decisions.

In addition, J. R. Sorment and Mike Fuller provide the following definition in Cloud FinOps:

9
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES
The term “FinOps” typically refers to the emerging professional movement that advo- cates a
collaborative working relationship between DevOps and Finance, resulting in an iterative, data-driven
management of infrastructure spending (i.e., lowering the unit economics of cloud) while simultaneously
increasing the cost efficiency and, ultimately, the profitability of the cloud environment.
The cloud age has seen a significant change in the cost structure of data. Data systems are typically

purchased with a capital expenditure in an on-premises arrangement, with a new system being added every few

years. The budget and the required computing and storage capacity must be balanced by the responsible parties.

Under buying may necessitate quicker technology refresh cycles, which come with additional expenses, while
overbuying results in financial waste and hinders future data initiatives and requires a large amount of staff work
to monitor system load and data quantity.

The majority of data solutions in the cloud era are easily scalable and pay-as-you-go. Systems may
operate using a pay-as-you-go paradigm, a cost-per-query methodology, or a cost-per-processing-capacity
model. Compared to the capital expenditure approach, this strategy may be significantly more effective. Scaling
down to save money and scaling up for great performance is now feasible. Pay-as-you-go, on the other hand,
makes spending far more flexible. Data executives now have the problem of managing efficiency, priorities, and
budgets.

Cloud tooling requires a set of procedures for resource and expense management. Data engineers used
to think in terms of performance engineering, which involves purchasing enough resources for upcoming
requirements and optimising data processes on a certain set of resources. Engineers working in FinOps must
develop the ability to consider cloud system cost structures. For instance, while operating a distributed cluster,
what combination of AWS spot instances is suitable? Which strategy is best for managing a large daily task in
terms of performance and cost-effectiveness? When should the business go to reserved capacity from a pay-per-
query model?

The operational monitoring methodology is evolved by FinOps to continuously monitor spending.
FinOps may track the continuous cost of serverless operations managing traffic in addition to expenditure spikes
that trigger warnings, rather than just tracking requests and CPU usage for a web server. Companies may think
about establishing strict expenditure caps with embarrassing failure modes in reaction to spending spikes, just

like systems are made to fail gracefully in the event of high traffic.

10
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

Major Architecture Concepts

If you follow the current trends in data, it seems like new types of
data tools and architectures are arriving on the scene every week. Amidst
this flurry of activity, we must not lose sight of the main goal of all of these
architectures: to take data and transform it into something useful for
downstream consumption.

Domains and Services

A domain is the real-world subject areca for which you’re
architecting. A service is a set of functionality whose goal is to accomplish
a task. For example, you might have a sales order-processing service whose
task is to process orders as they are created. The sales order-processing
service’s only job is to process orders; it doesn’t provide other
functionality, such as inventory management or updating user profiles.

A domain can contain multiple services. For example, you might
have a sales domain with three services: orders, invoicing, and products.
Each service has particular tasks that support the sales domain. Other
domains may also share services (Figure 3-3). In this case, the accounting
domain is responsible for basic accounting functions: invoicing, payroll,
and accounts receivable (AR). Notice the accounting domain shares the
invoice service with the sales domain since a sale generates an invoice,

and accounting must keep track of invoices to ensure that payment is
received. Sales and accounting own their respective domains.

~

Sales domain Accounting domain

[Order service] [Invoice service] [Invoice service][Payroll service]

Product service AR service

- > . >

Figure 3-3. Two domains (sales and accounting) share a common service (invoices), and
sales and accounting own their respective domains

When thinking about what constitutes a domain, focus on what the domain
repre- sents in the real world and work backward. In the preceding
example, the sales domain should represent what happens with the sales
function in your company. When architecting the sales domain, avoid
cookie-cutter copying and pasting from what other companies do. Your
company’s sales function likely has unique aspects that require specific
services to make it work the way your sales team expects.

Identify what should go in the domain. When determining what the domain
should encompass and what services to include, the best advice is to simply
go and talk with users and stakeholders, listen to what they’re saying, and
build the services that will help them do their job. Avoid the classic trap of
architecting in a vacuum.

11
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

Distributed Systems, Scalability, and Designing for Failure

The discussion in this section is related to our second and third principles of
data engineering architecture discussed previously: plan for failure and
architect for scala- bility. As data engineers, we’re interested in four closely
related characteristics of data systems (availability and reliability were
mentioned previously, but we reiterate them here for completeness):

Scalability
Allows us to increase the capacity of a system to improve performance
and handle the demand. For example, we might want to scale a system
to handle a high rate of queries or process a huge data set.

Elasticity
The ability of a scalable system to scale dynamically; a highly elastic
system can automatically scale up and down based on the current
workload. Scaling up is critical as demand increases, while scaling
down saves money in a cloud environ- ment. Modern systems
sometimes scale to zero, meaning they can automatically shut down
when idle.

Availability
The percentage of time an IT service or component is in an operable state.

Reliability
The system’s probability of meeting defined standards in performing its
intended function during a specified interval.
How are these characteristics related? If a system fails to meet performance
requirements during a specified interval, it may become unresponsive. Thus
low reliability can lead to low availability. On the other hand, dynamic
scaling helps ensure adequate performance without manual intervention
from engineers—elastic- ity improves reliability.

Scalability can be realized in a variety of ways. For your services and
domains, does a single machine handle everything? A single machine can
be scaled vertically; you can increase resources (CPU, disk, memory, 1/O).
But there are hard limits to possible resources on a single machine. Also,
what happens if this machine dies? Given enough time, some components
will eventually fail. What’s your plan for backup and failover? Single
machines generally can’t offer high availability and reliability.

We utilize a distributed system to realize higher overall scaling capacity and
increased availability and reliability. Horizontal scaling allows you to add
more machines to satisfy load and resource requirements (Figure 3-4).
Common horizontally scaled systems have a leader node that acts as the
main point of contact for the instantiation, progress, and completion of
workloads. When a workload is started, the leader node distributes tasks to
the worker nodes within its system, completing the tasks and returning the
results to the leader node. Typical modern distributed architectures also
build in redundancy. Data is replicated so that if a machine dies, the other
machines can pick up where the missing server left off; the cluster may add
more machines to restore capacity.

12
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

Distributed systems are widespread in the various data technologies you’ll
use across your architecture. Almost every cloud data warehouse object
storage system you use has some notion of distribution under the hood.
Management details of the distributed system are typically abstracted away,
allowing you to focus on high-level architecture instead of low-level
plumbing.

[Leader node]
A

[Worker node J [Worker node] [Worker node]

Figure 3-4. A simple horizontal distributed system utilizing a leader-follower architec-
ture, with one leader node and three worker nodes

Tight Versus Loose Coupling: Tiers, Monoliths, and Microservices

When designing a data architecture, you choose how much interdependence
you want to include within your various domains, services, and
resources. On one end of the spectrum, you can choose to have extremely
centralized dependencies and workflows. Every part of a domain and
service is vitally dependent upon every other domain and service. This
pattern is known as tightly coupled.

On the other end of the spectrum, you have decentralized domains and
services that do not have strict dependence on each other, in a pattern
known as loose coupling. In a loosely coupled scenario, it’s easy for
decentralized teams to build systems whose data may not be usable by their
peers. Be sure to assign common standards, owner- ship, responsibility, and
accountability to the teams owning their respective domains and services.
Designing “good” data architecture relies on trade-offs between the tight
and loose coupling of domains and services.

It’s worth noting that many of the ideas in this section originate in software
develop- ment. We’ll try to retain the context of these big ideas’ original
intent and spirit— keeping them agnostic of data—while later explaining
some differences you should be aware of when applying these concepts to
data specifically.

Architecture tiers

As you develop your architecture, it helps to be aware of architecture tiers.
Your architecture has layers—data, application, business logic,
presentation, and so forth

—and you need to know how to decouple these layers. Because tight
coupling of modalities presents obvious vulnerabilities, keep in mind how

13
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

you structure the layers of your architecture to achieve maximum reliability
and flexibility. Let’s look at single-tier and multitier architecture.

Single tier. In a single-tier architecture, your database and application are
tightly coupled, residing on a single server (Figure 3-5). This server
could be your laptop or a single virtual machine (VM) in the cloud. The
tightly coupled nature means if the server, the database, or the application
fails, the entire architecture fails. While single-tier architectures are good
for prototyping and development, they are not advised for production
environments because of the obvious failure risks.

Database Application

Figure 3-5. Single-tier architecture

Even when single-tier architectures build in redundancy (for example, a
failover replica), they present significant limitations in other ways. For
instance, it is often impractical (and not advisable) to run analytics queries

against production applica- tion databases. Doing so risks overwhelming
the database and causing the application to become unavailable. A single-
tier architecture is fine for testing systems on a local machine but is not
advised for production uses.

Multitier. The challenges of a tightly coupled single-tier architecture are
solved by decoupling the data and application. A multitier (also known as
n-tier) architecture is composed of separate layers: data, application,
business logic, presentation, etc. These layers are bottom-up and
hierarchical, meaning the lower layer isn’t necessarily dependent on the
upper layers; the upper layers depend on the lower layers. The notion is to
separate data from the application, and application from the presentation.

A common multitier architecture is a three-tier architecture, a widely used
client- server design. A three-tier architecture consists of data, application
logic, and presen- tation tiers (Figure 3-6). Each tier is isolated from the
other, allowing for separation of concerns. With a three-tier architecture,
you’re free to use whatever technologies you prefer within each tier without
the need to be monolithically focused.

14
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

-~

Presentation layer

T

J

~

Application/logic layer

T

e a

Data layer

L J

Figure 3-6. A three-tier architecture

We’ve seen many single-tier architectures in production. Single-tier
architectures offer simplicity but also severe limitations. Eventually, an
organization or application outgrows this arrangement; it works well until it
doesn’t. For instance, in a single-tier architecture, the data and logic layers
share and compete for resources (disk, CPU, and memory) in ways that are
simply avoided in a multitier architecture. Resources are spread across
various tiers. Data engineers should use tiers to evaluate their layered
architecture and the way dependencies are handled. Again, start simple and
bake in evolution to additional tiers as your architecture becomes more
complex.

In a multitier architecture, you need to consider separating your layers
and the way resources are shared within layers when working with a
distributed system. Distributed systems under the hood power many
technologies you’ll encounter across the data engineering lifecycle. First,
think about whether you want resource contention with your nodes. If not,
exercise a shared-nothing architecture: a single node handles each request,
meaning other nodes do not share resources such as memory, disk, or CPU
with this node or with each other. Data and resources are isolated to the
node. Alternatively, various nodes can handle multiple requests and share
resources but at the risk of resource contention. Another consideration is
whether nodes should share the same disk and memory accessible by all
nodes. This is called a shared disk architecture and is common when you
want shared resources if a random node failure occurs.

Monoliths

The general notion of a monolith includes as much as possible under one
roof; in its most extreme version, a monolith consists of a single codebase
running on a single machine that provides both the application logic and
user interface.

Coupling within monoliths can be viewed in two ways: technical coupling
and domain coupling. Technical coupling refers to architectural tiers, while
domain cou- pling refers to the way domains are coupled together. A
monolith has varying degrees of coupling among technologies and domains.
You could have an application with various layers decoupled in a multitier
architecture but still share multiple domains. Or, you could have a single-
tier architecture serving a single domain.

15
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

The tight coupling of a monolith implies a lack of modularity of its
components. Swapping out or upgrading components in a monolith is often
an exercise in trading one pain for another. Because of the tightly coupled
nature, reusing components across the architecture is difficult or
impossible. When evaluating how to improve a monolithic architecture,
it’s often a game of whack-a-mole: one component is improved, often at the
expense of unknown consequences with other areas of the monolith.

Data teams will often ignore solving the growing complexity of their
monolith, letting it devolve into a big ball of mud.

Chapter 4 provides a more extensive discussion comparing monoliths to
distributed technologies. We also discuss the distributed monolith, a strange
hybrid that emerges when engineers build distributed systems with
excessive tight coupling.

Microservices

Compared with the attributes of a monolith—interwoven services,
centralization, and tight coupling among services—microservices are the
polar opposite. Microservices architecture comprises Separate,
decentralized, and loosely coupled services. Each service has a specific
function and is decoupled from other services operating within its domain.
If one service temporarily goes down, it won’t affect the ability of other
services to continue functioning.

A question that comes up often is how to convert your monolith into many
micro- services (Figure 3-7). This completely depends on how complex
your monolith is and how much effort it will be to start extracting services
out of it. It’s entirely possible that your monolith cannot be broken apart,
in which case, you’ll want to start creating a new parallel architecture that
has the services decoupled in a microservices-friendly manner. We don’t
suggest an entire refactor but instead break out services. The monolith
didn’t arrive overnight and is a technology issue as an organizational one.
Be sure you get buy-in from stakeholders of the monolith if you plan to
break it apart.

\

Monolith Microservice architecture

[Codebase Service Service Service Service

|

Database Database

/ \

Figure 3-7. An extremely monolithic architecture runs all functionality inside a single
codebase, potentially colocating a database on the same host server

16

NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

https://oreil.ly/2brRT

DATA ENGINEERING
LECTURE NOTES

Considerations for data architecture

As we mentioned at the start of this section, the concepts of tight versus
loose coupling stem from software development, with some of these
concepts dating back over 20 years. Though architectural practices in data
are now adopting those from software development, it’s still common to see
very monolithic, tightly coupled data architectures. Some of this is due to
the nature of existing data technologies and the way they integrate.

For example, data pipelines might consume data from many sources
ingested into a central data warehouse. The central data warehouse is
inherently monolithic. A move toward a microservices equivalent with a
data warehouse is to decouple the workflow with domain-specific data
pipelines connecting to corresponding domain-specific data warehouses.
For example, the sales data pipeline connects to the sales-specific data
warehouse, and the inventory and product domains follow a similar pattern.

Rather than dogmatically preach microservices over monoliths (among
other argu- ments), we suggest you pragmatically use loose coupling as an
ideal, while recogniz- ing the state and limitations of the data technologies
you’re using within your data architecture. Incorporate reversible
technology choices that allow for modularity and loose coupling whenever
possible.

As you can see in Figure 3-7, you separate the components of your
architecture into different layers of concern in a vertical fashion. While a
multitier architecture solves the technical challenges of decoupling shared
resources, it does not address the com- plexity of sharing domains. Along
the lines of single versus multitiered architecture, you should also consider
how you separate the domains of your data architecture. For example, your
analyst team might rely on data from sales and inventory. The sales and
inventory domains are different and should be viewed as separate.

One approach to this problem is centralization: a single team is responsible
for gathering data from all domains and reconciling it for consumption
across the orga- nization. (This is a common approach in traditional data
warehousing.) Another approach is the data mesh. With the data mesh, each
software team is responsible for preparing its data for consumption across
the rest of the organization. We’ll say more about the data mesh later in this
chapter.

Our advice: monoliths aren’t necessarily bad, and it might make sense to
start with one under certain conditions. Sometimes you need to move fast,
and it’s much simpler to start with a monolith. Just be prepared to break it
into smaller pieces eventually; don’t get too comfortable.

User Access: Single Versus Multitenant

As a data engineer, you have to make decisions about sharing systems
across mul- tiple teams, organizations, and customers. In some sense,
all cloud services are multitenant, although this multitenancy occurs at
various grains. For example, a cloud compute instance is usually on a
shared server, but the VM itself provides some degree of isolation. Object

17
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

storage is a multitenant system, but cloud vendors guarantee security and
isolation so long as customers configure their permissions correctly.

Engineers frequently need to make decisions about multitenancy at a much
smaller scale. For example, do multiple departments in a large company
share the same data warehouse? Does the organization share data for
multiple large customers within the same table?

We have two factors to consider in multitenancy: performance and security.
With multiple large tenants within a cloud system, will the system support
consistent performance for all tenants, or will there be a noisy neighbor
problem? (That is, will high usage from one tenant degrade performance
for other tenants?) Regarding security, data from different tenants must be
properly isolated. When a company has multiple external customer tenants,
these tenants should not be aware of one another, and engineers must
prevent data leakage. Strategies for data isolation vary by system. For
instance, it is often perfectly acceptable to use multitenant tables and
isolate data through views. However, you must make certain that these
views cannot leak data. Read vendor or project documentation to
understand appropriate strategies and risks.

Event-Driven Architecture

Your business is rarely static. Things often happen in your business, such as
getting a new customer, a new order from a customer, or an order for a
product or service. These are all examples of events that are broadly defined
as something that happened, typically a change in the state of something.
For example, a new order might be created by a customer, or a customer
might later make an update to this order.

An event-driven workflow (Figure 3-8) encompasses the ability to create,
update, and asynchronously move events across various parts of the data
engineering lifecy- cle. This workflow boils down to three main areas:
event production, routing, and consumption. An event must be produced
and routed to something that consumes it without tightly coupled
dependencies among the producer, event router, and consumer.

[Producer]&b[Event router]&b[Consumer]

Figure 3-8. In an event-driven workflow, an event is produced, routed, and then consumed

An event-driven architecture (Figure 3-9) embraces the event-driven workflow and
uses this to communicate across various services. The advantage of an event-
driven architecture is that it distributes the state of an event across multiple
services. This is helpful if a service goes offline, a node fails in a distributed
system, or you’d like multiple consumers or services to access the same events.
Anytime you have loosely coupled services, this is a candidate for event-driven
architecture. Many of the examples we describe later in this chapter incorporate
some form of event-driven architecture.

18
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

Service 1 Service 2

Event Event

Figure 3-9. In an event-driven architecture, events are passed between loosely coupled
services

Brownfield Versus Greenfield Projects

Before you design your data architecture project, you need to know whether
you’re starting with a clean slate or redesigning an existing architecture.
Each type of project requires assessing trade-offs, albeit with different
considerations and approaches. Projects roughly fall into two buckets:
brownfield and greenfield.

Brownfield projects

Brownfield projects often involve refactoring and reorganizing an existing
architecture and are constrained by the choices of the present and past.
Because a key part of architecture is change management, you must figure
out a way around these limitations and design a path forward to achieve
your new business and technical objectives. Brownfield projects require a
thorough understanding of the legacy archi- tecture and the interplay of
various old and new technologies. All too often, it’s easy to criticize a
prior team’s work and decisions, but it is far better to dig deep, ask
questions, and understand why decisions were made. Empathy and context
go a long way in helping you diagnose problems with the existing
architecture, identify opportunities, and recognize pitfalls.

You’ll need to introduce your new architecture and technologies and
deprecate the old stuff at some point. Let’s look at a couple of popular
approaches. Many teams jump headfirst into an all-at-once or big-bang
overhaul of the old architecture, often figuring out deprecation as they go.
Though popular, we don’t advise this approach because of the associated
risks and lack of a plan. This path often leads to disaster, with many
irreversible and costly decisions. Your job is to make reversible, high-ROI
decisions.

A popular alternative to a direct rewrite is the strangler pattern: new
systems slowly and incrementally replace a legacy architecture’s
components. Eventually, the legacy architecture is completely replaced. The
attraction to the strangler pattern is its targeted and surgical approach of
deprecating one piece of a system at a time. This allows for flexible and
reversible decisions while assessing the impact of the deprecation on
dependent systems.

It’s important to note that deprecation might be “ivory tower” advice and
not practi- cal or achievable. Eradicating legacy technology or architecture
might be impossible if you’re at a large organization. Someone,
somewhere, is using these legacy compo- nents. AS someone once said,
19
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

“Legacy is a condescending way to describe something that makes money.”

If you can deprecate, understand there are numerous ways to deprecate your
old architecture. It is critical to demonstrate value on the new platform by
gradually increasing its maturity to show evidence of success and then
follow an exit plan to shut down old systems.

Greenfield projects

On the opposite end of the spectrum, a greenfield project allows you to
pioneer a fresh start, unconstrained by the history or legacy of a prior
architecture. Greenfield projects tend to be easier than brownfield projects,
and many data architects and engineers find them more fun! You have the
opportunity to try the newest and coolest tools and architectural patterns.
What could be more exciting?

You should watch out for some things before getting too carried away. We
see teams get overly exuberant with shiny object syndrome. They feel
compelled to reach for the latest and greatest technology fad without
understanding how it will impact the value of the project. There’s also a
temptation to do resume-driven development, stacking up impressive new
technologies without prioritizing the project’s ultimate goals.?> Always
prioritize requirements over building something cool.

Whether you’re working on a brownfield or greenfield project, always
focus on the tenets of “good” data architecture. Assess trade-offs, make
flexible and reversible decisions, and strive for positive ROI.

Now, we’ll look at examples and types of architectures—some established
for dec- ades (the data warehouse), some brand-new (the data lakehouse),
and some that quickly came and went but still influence current architecture
patterns (Lambda architecture).

20
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

Data Generation in Source Systems:

This chapter covers some popular operational source system patterns and the
important types of source systems. Many source systems exist for data generation. These
systems generate and things you should consider when working with source systems. We also
discuss how the undercurrents of data engineering apply to this first phase of the data
engineering lifecycle.

Data engineering lifecycle
Analytics

—

(—
{ Ingestion ITransformationI Serving] Machine
Generation T A learning

| =

Storage e

Reverse ETL

—_—J

Undercurrents:
. Data Data ; Software
[Security] [management] [DataOps] [architecture] [Orchestratlon] [engineering]

Figure 5-1. Source systems generate the data for the rest of the data engineering lifecycle

As data rapidly increasing in an organization, especially with the rise of data sharing,
we expect that a data engineer’s role will shift heavily toward understanding between data
sources and destinations. The basic tasks of data engineering moving data from A to B will
simplify dramatically. On the other hand, it will remain critical to understand the nature of
data as it’s created in source systems.

Sources of Data: How Is Data Created?

As we learn about the various operational patterns of the systems that generate data,
it’s essential to understand how data is created. Data is an unorganized, context-less
collection of facts and figures. It can be created in many ways, both analog and digital.

Analog data creation occurs in the real world, such as vocal speech, sign language,
writing on paper, or playing an instrument. This analog data is often transient; how often
have you had a verbal conversation whose contents are lost to the either after the conversation
ends?

Digital data is either created by converting analog data to digital form or is the native
product of a digital system. An example of analog to digital is a mobile texting app that
converts analog speech into digital text. An example of digital data creation is a credit card
transaction on an ecommerce platform. A customer places an order, the transaction is
charged to their credit card, and the information for the transaction is saved to various
databases.

We’ll utilize a few common examples in this chapter, such as data created when
interacting with a website or mobile application. But in truth, data is everywhere in the
world around us. We capture data from 10T devices, credit card terminals, telescope sensors,
stock trades, and more.

Get familiar with your source system and how it generates data. Put in the effort

21
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

to read the source system documentation and understand its patterns and quirks. If your
source system is an RDBMS, learn how it operates (writes, commits, queries, etc.); learn the
ins and outs of the source system that might affect your ability to ingest from it.

Source Systems: Main ldeas

Source systems produce data in various ways. This section discusses the main ideas
you’ll frequently encounter as you work with source systems.

Files and Unstructured Data

A file is a sequence of bytes, typically stored on a disk. Applications often write data
to files. Files may store local parameters, events, logs, images, and audio. In addition, files
are a universal medium of data exchange. As much as data engineers wish that they could get
data programmatically, much of the world still sends and receives files. For example, if you’re
getting data from a government agency, there’s an excellent chance you’ll download the data
as an Excel or CSV file or receive the file in an email.

The main types of source file formats you’ll run into as a data engineer—files that
originate either manually or as an output from a source system process—are Excel, CSV,
TXT, JSON, and XML. These files have their quirks and can be structured (Excel, CSV),
semi structured (JSON, XML, CSV), or unstructured (TXT, CSV). Although you’ll use
certain formats heavily as a data engineer (such as Parquet, ORC, and Avro), we’ll cover
these later and put the spotlight here on source system files.

CSV-Comma Separated Value, TXT, JSON-Java Script Object Notation, and XML-Extension Markup
Language.

APIs

Application programming interfaces (APIs) are a standard way of exchanging data
between systems. In theory, APIs simplify the data ingestion task for data engineers. In
practice, many APIs still expose a good deal of data complexity for engineers to manage.
Even with the rise of various services and frameworks, and services for automating API
data ingestion, data engineers must often invest a good deal of energy into maintaining
custom API connections.

Application DataBases (OLTP Systems)

An application database stores the state of an application. A standard example is a
database that stores account balances for bank accounts. As customer transactions and
payments happen, the application updates bank account balances.

Typically, an application database is an online transaction processing (OLTP) system— a
database that reads and writes individual data records at a high rate. OLTP systems are often
referred to as transactional databases, but this does not necessarily imply that the system in question
supports atomic transactions.

More generally, OLTP databases support low latency and high concurrency. An
RDBMS database can select or update a row in less than a millisecond (not accounting for
network latency) and handle thousands of reads and writes per second. A document database
cluster can manage even higher document commit rates at the expense of potential
inconsistency. Some graph databases can also handle transactional use cases.

Fundamentally, OLTP databases work well as application backends when thousands
or even millions of users might be interacting with the application simultaneously,

updating and writing data concurrently. OLTP systems are less suited to use cases driven by
22
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

analytics at scale, where a single query must scan a vast amount of data.

Online Analytical Processing System

An online analytical processing (OLAP) system is built to run large analytics queries
and is typically inefficient at handling lookups of individual records. For example, modern
column databases are optimized to scan large volumes of data, dispensing with indexes to
improve scalability and scan performance.

Any query typically involves scanning a minimal data block, often 100 MB or more
in size. Trying to look up thousands of individual items per second in such a system will
bring it to its knees unless it is combined with a caching layer designed for this use case. Note
that we’re using the term OLAP to refer to any database system that supports high-scale
interactive analytics queries; we are not limiting ourselves to systems that support OLAP
cubes (multidimensional arrays of data). The online part of OLAP implies that the system
constantly listens for incoming queries, making OLAP systems suitable for interactive
analytics.

OLAPs are typically storage and query systems for analytics. Data engineers often
need to read data from an OLAP system. For example, a data warehouse might serve data
used to train an ML model. Or, an OLAP system might serve a reverse ETL workflow, where
derived data in an analytics system is sent back to a source system, such as a CRM, SaaS
platform, or transactional application.

Change Data Capture:

Change data capture (CDC) is a method for extracting each change event (insert,
update, delete) that occurs in a database. CDC is frequently Improved to coping between
databases in near real time or create an event stream for downstream processing.

CDC is handled differently depending on the database technology. Relational data
bases often generate an event log stored directly on the database server that can be processed
to create a stream. Many cloud NoSQL databases can send a log or event stream to a target
storage location.

Logs:

A log captures information about events that occur in systems. For example, a log
may capture traffic and usage patterns on a web server. Our PC’s operating system
(Windows, macQOS, Linux) logs events as the system boots and when applications start or
crash, for example.

Logs are a rich data source, potentially valuable for downstream data analysis, ML,
and automation. Here are a few familiar sources of logs:

Operating systems
Applications
Servers
Containers
Networks

IoT devices

All logs track events and event metadata. At a minimum, a log should capture who,

23
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

what, and when:

Who
The human, system, or service account associated with the event (e.g., a web
browser user agent or a user 1D)

What happened
The event and related metadata

When
The timestamp of the event

Log encoding
Logs are encoded in a few ways:

Binary-encoded logs
These encode data in a custom compact format for space efficiency and fast 1/0.

Semi Structured logs

These are encoded as text in an object serialization format (JSON, more often than
not). Semi structured logs are machine-readable and portable. However, they are much less
efficient than binary logs. And though they are nominally machine-readable, extracting value
from them often requires significant custom code.

Plain-text (unstructured) logs
These essentially store the console output from software. These logs can provide
helpful information for data scientists and ML engineers, though extracting useful

information from the raw text data might be complicated.

Log resolution
Logs are created at various resolutions and log levels.

The log resolution refers to the amount of event data captured in a log. For example,
database logs capture enough information from database events to allow reconstructing the
database state at any point in time.

On the other hand, capturing all data changes in logs for a big data system often isn’t
practical. Instead, these logs may note only that a particular type of commit event has
occurred.

The log level refers to the conditions required to record a log entry, specifically
concerning errors and debugging. Software is often configurable to log every event or to log
only errors.

Log latency: Batch or real time

Batch logs are often written continuously to a file. Individual log entries can be
written to a messaging system such as Kafka or Pulsar for real-time applications.

Database Logs:

Database logs are essential enough that they deserve more detailed coverage. Write-
ahead logs—typically, binary files stored in a specific database-native format—play a crucial
role in database guarantees and recoverability. The database server receives write and update
requests to a database table (see Figure 5-3), storing each operation in the log before

24
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES
acknowledging the request. The acknowledgment comes with a log-associated guarantee:

even if the server fails, it can recover its state on reboot by completing the unfinished work
from the logs.

Database logs are extremely useful in data engineering, especially for CDC to
generate event streams from database changes.

Row ID Address Zip
1 1342 Juniper Road 99432
2 13 33rd Street Apt B 97602
3 84 East 2400 North 19578

(L)
Operation log

Figure 5-3. Database logs record operations on a table

CRUD

CRUD, which stands for create, read, update, and delete, is a transactional pattern
commonly used in programming and represents the four basic operations of persistent
storage. CRUD is the most common pattern for storing application state in a database. A
basic tenet of CRUD is that data must be created before being used. After the data has been
created, the data can be read and updated. Finally, the data may need to be destroyed. CRUD
guarantees these four operations will occur on data, regardless of its storage.

CRUD is a widely used pattern in software applications, and you’ll commonly find
CRUD used in APIs and databases. For example, a web application will make heavy use of
CRUD for RESTful HTTP requests and storing and retrieving data from a database.

As with any database, we can use snapshot-based extraction to get data from a
database where our application applies CRUD operations. On the other hand, event
extraction with CDC gives us a complete history of operations and potentially allows for near
real-time analytics.

Source System Practical Details:

This section discusses the practical details of interacting with modern source systems. We’ll
get into the details of commonly encountered databases, APIs, and other aspects. This
information will have a shorter shelf life than the main ideas discussed previously; popular
API frameworks, databases, and other details will continue to change rapidly.

1.Databases:

In this section, we’ll look at common source system database technologies that we’ll
encounter as a data engineer and high-level considerations for working with these systems.
There are as many types of databases as there are use cases for data.

25
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

Major considerations for understanding database technologies:

Database management system

A database system used to store and serve data. Abbreviated as DBMS, it consists of a
storage engine, query optimizer, disaster recovery, and other key components for managing
the database system.

Lookups

How does the database find and retrieve data? Indexes can help speed up lookups, but not all
databases have indexes. Know whether your database uses indexes; if so, what are the best
patterns for designing and maintaining them? Understand how to leverage for efficient
extraction. It also helps to have a basic knowledge of the major types of indexes, including B-
tree and log-structured merge-trees (LSM).

Query optimizer

Does the database utilize an optimizer? What are its characteristics? Scaling and distribution
Does the database scale with demand? What scaling strategy does it deploy? Does it scale
horizontally (more database nodes) or vertically (more resources on a single machine)?
Modeling patterns

What modeling patterns work best with the database.

CRUD

How is data queried, created, updated, and deleted in the database? Every type of database
handles CRUD operations differently.

Consistency

Is the database fully consistent, or does it support a relaxed consistency model (e.g., eventual
consistency)? Does the database support optional consistency modes for reads and writes
(e.g., strongly consistent reads)?

Relational databases

A relational database management system (RDBMS) is one of the most common application
backends. Relational databases were developed at IBM in the 1970s and popularized by
Oracle in the 1980s. The growth of the internet saw the rise of the LAMP stack (Linux,
Apache web server, MySQL, PHP) and an explosion of vendor and open source RDBMS
options. Even with the rise of NoSQL databases, relational databases have remained
extremely popular. Data is stored in a table of relations (rows), and each relation contains
multiple fields (columns); see Figure 5-7. Note that we use the terms column and field
interchangeably throughout this book. Each relation in the table has the same schema (a
sequence of columns with assigned static types such as string, integer, or float). Rows are
typically stored as a contiguous sequence of bytes on disk.

Table

Row 1
Row 2 Row

Row 3 first name | last name | customer id]

Row 4

N
Figure 5-7. RDBMS stores and retrieves data at a row level

26
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

Nonrelational databases: NoSQL
NoSQL, or “Not Only SQL,” is a database management system (DBMS) designed to
handle large volumes of unstructured and semi-structured data. Unlike traditional relational
databases that use tables and pre-defined schemas, NoSQL databases provide flexible data
models and support horizontal scalability, making them ideal for modern applications that
require real-time data processing.

Types of NoSQL Databases
NoSQL databases are generally classified into four main categories based on how they store
and retrieve data
Document databases
Store data in JSON, BSON, or XML format.
Data is stored as documents that can contain varying attributes.
Examples: MongoDB, CouchDB, Cloudant
Ideal for content management systems, user profiles, and catalogs where flexible
schemas are needed.
Key-value stores
Data is stored as key-value pairs, making retrieval extremely fast.
Optimized for caching and session storage.
Examples: Redis, Memcached, Amazon DynamoDB
Perfect for applications requiring session management, real-time data caching, and
leaderboards.
Column-family stores
Data is stored in columns rather than rows, enabling high-speed analytics and
distributed computing.
Efficient for handling large-scale data with high write/read demands.
Examples: Apache Cassandra, HBase, Google Bigtable
Great for time-series data, 10T applications, and big data analytics.
Graph databases
Data is stored as nodes and edges, enabling complex relationship management.
Best suited for social networks, fraud detection, and recommendation engines.
Examples: Neo4j, Amazon Neptune, ArangoDB.
Useful for applications requiring relationship-based queries such as fraud detection
and social network analysis.

2.APIs

APIs are the way in which we can exchange the data in the cloud, for SaaS platforms, and
between internal company systems. Many types of API interfaces exist across the web, but
we are principally interested in those built around HTTP, the most popular type on the web
and in the cloud.

REST

REST stands for representational state transfer. This set of practices and philosophies for
building HTTP web APIs. REST is built around HTTP verbs, such as GET and PUT; in
practice, modern REST uses only a handful of the verb mappings outlined in the original
dissertation.

GraphQL

GraphQL was created at Facebook as a query language for application data and an
alternative to generic REST APIs. Whereas REST APIs generally restrict your queries to a

27
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

DATA ENGINEERING
LECTURE NOTES

specific data model, GraphQL opens up the possibility of retrieving multiple data models in a
single request. This allows for more flexible and expressive queries than with REST.
GraphQL is built around JSON and returns data in a shape resembling the JSON query.

RPC and gRPC

A remote procedure call (RPC) is commonly used in distributed computing.

It allows you to run a procedure on a remote system.

gRPC is a remote procedure call library developed internally at Google in 2015 and later
released as an open standard. Many Google services, such as Google Ads and GCP, offer
gRPC APIs. gRPC is built around the Protocol Buffers open data serialization standard, also
developed by Google.

3.Data Sharing

The core concept of cloud data sharing is that a multitenant system supports security policies
for sharing data among tenants. Concretely, any public cloud object storage system with a
fine-grained permission system can be a platform for data sharing. Popular cloud data-
warehouse platforms also support data-sharing capabilities. Of course, data can also be shared
through download or exchange over email, but amultitenant system makes the process much
easier.

4. Message Queues and Event-Streaming Platforms
Message queues
A message queue is a mechanism to asynchronously send data (usually as small individual
messages, in the kilobytes) between systems. Data is published to a message queue and is
delivered to one or more subscribers (Figure 5-9). The subscriber acknowledges receipt of the
message, removing it from the queue.

Subscriber

acknowledges
the message

[Producer Message queue. Subscriber]

Message ordering and delivery

The order in which messages are created, sent, and received can significantly impact
downstream subscribers. In general, order in distributed message queues is a tricky problem.
Message queues often apply a fuzzy notion of order and first in, first out (FIFO). Strict FIFO
means that if message A is ingested before message B, message A will always be delivered
before message B. In practice, messages might be published and received out of order,
especially in highly distributed message systems.

Delivery frequency. Messages can be sent exactly once or at least once. If a message is sent
exactly once, then after the subscriber acknowledges the message, the message disappears
and won’t be delivered again.

TP marketing

web orders topic

Order-processing J
system [)
fulfillment

. J

28
NBKRIST Prepared by Mr. O.Kiran Kishore Dept of CSE

