Integrated Circuit:

It is a miniature, low cost electronic circuit consisting of active and passive components that are
irreparably joined together on a single crystal chip of silicon.

Classification:

1. Based on mode of operation

a. Digital IC’s

b. Linear IC’s

Digital IC’s: Digital IC’s are complete functioning logic networks that are equivalents of

basic transistor logic circuits.

Ex:- gates ,counters, multiplexers, demultiplexers, shift registers.

Linear IC’s: Linear I1C’s are equivalents of discrete transistor networks, such as amplifiers,
filters, frequency multipliers, and modulators that often require additional external components
for satisfactory operation.

Note: Of all presently available linear ICs, the majority are operational amplifiers.

2. Based on fabrication

a. Monolithic IC’s

b. Hybrid IC’s

a. Monolithic IC’s : In monolithic ICs all components (active and passive) are formed
simultaneously by a diffusion process. Then a metallization process is used in interconnecting these
components to form the desired circuit.

b. Hybrid IC’s: In hybrid ICs, passive components (such as resistors and capacitors) and the
interconnections between them are formed on an insulating substrate. The substrate is used as a
chassis for the integrated components. Active components such as transistors and diodes as well
as monolithic integrated circuits, are then connected to form a complete circuit.

3. Based on number of components integrated on IC’s

a. SSI <10 components

b. MSI <100 components
c. LSI >100 components

d. VLSI >1000 components

Integrated circuit Package types:
1. The flat pack
2. The metal can or transistor pack
3. The dual in line package or DIP



- TO-5 Style package TO-5 Style package with
Cormmic flat fachagk with straight leads dual-in-line formed
leads (DIL-CAN)

-

8-lead version

14-lead version 8, 10, and 12-lead versions
(c)
(a) (b)
Dual-in-line welded-seal
TO-5 Style package o o : ceramic package
with radial formed leads Duak-in-line plastic package

(d) 8, 14, and 16-lead versions 14, and 16-lead versions

(e) (f)

Figure 2-5 Types of IC packages. (a) Flat pack. (b)-(d) Metal
can. (e) and (f) Dual-in-line package. (Courtesy of RCA Corpora-
tion.)

Temperature Ranges
All ICs manufactured fall into one of the three basic temperature grades:

1. Military temperature range: —55° to +125°C (or —55° to +85°C) |
2. Industrial temperature range: —20° to +85°C (or —40° to +85°C)
3. Commercial temperature range: 0° to +70°C (or 0° to +75°C)




THE OPERATIONAL AMPLIFIER:

An operational amplifier is a direct-coupled high-gain amplifier usually consisting of one or
more differential amplifiers and usually followed by a level translator and an output stage. An
operational amplifier is available as a single integrated circuit package.

The operational amplifier is a versatile device that can be used to amplify dc as well as ac input
signals and was originally designed for computing such mathematical functions as addition,
subtraction, multiplication, and integration. Thus the name operational amplifier stems from its
original use for these mathematical operations and is abbreviated to op-amp. With the addition of
suitable external feedback components, the modern day op-amp can be used for a variety of
applications, such as ac and dc signal amplification, active filters, oscillators, comparators,
regulators, and others.

L
BLOCK DIAGRAM REPRESENTATION OF A TYPICA

OP-AMP
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Si an op-amp is a multistage amplifier, it can be represented by @ block diagra
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as shown in Figure 2-1.
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Figure 2-1 Block diagram of a typical op-amp.

The basic amplifier used in Op-Amp is a differential amplifier.

Differential amplifier

Let us consider the emitter-biased circuit. Figure 1-1 shows two identical emitter biased circuits
in that transistor Q1 has the same characteristics as transistor Q2, RE1= RE2, RC1 =Rc2, and the
magnitude of +Vcc is equal to the magnitude of -VEE. Remember that the supply voltages +



+Vcc and -VEE are measured with respect to ground. To obtain a single circuit such as the one
in Figure 1-2, we should reconnect these two circuits as follows:

1. Reconnect +VCC supply voltages of the two circuits since the voltages are of the same
polarity and amplitude. Similarly, reconnect -VEE supply voltages.

2. Reconnect the emitter E1 of transistor Q1 to the emitter E2 of transistor Q2. (This reconnection
places RE1 in parallel with RE2)

3. Show the input signal vin1 applied to the base B1 of transistor Q1 and vin2 applied to the base
B2 of transistor Q2.

4. Label the voltage between the collectors C1 and C2 as vo. (The vo is the output voltage.)

+Vee +V

cC

RCY RCZ

B, B,
Q, Q,
El E?
RE“ REZ

Figure 1-1 Two identical
~VEe ~Vee emitter-biased circuits.
+Vcc
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Figure 1-2 Dual-input, balanced-output differential amplifier.



DIFFERENTIAL AMPLIFIER CIRCUIT CONFIGURATIONS

The four differential amplifier configurations are the following:
1. Dual-input, balanced-output differential amplifier

2. Dual-input, unbalanced-output differential amplifier

3. Single-input, balanced-output differential amplifier.

4. Single-input, unbalanced-output differential amplifier

DUAL-INPUT, BA LANCED-OUTPUT DIFFERENTIAL AMPLIFIER

1. DC Analysis

Vit =0V +
v 2 | 2R,
~Vee

Figure 1-3 DC equivalent circuit of the dual-input, balanced-
output differential amplifier.

The dc equivalent circuit can be obtained simply by reducing the input signals vinl and vin2 to
zero. To determine the operating point values ICQ and VCEQ,



Applying Kirchhoff’s voltage law to the base—emitter loop of the transistor
0, (see Figure 1-3),

—Rindg — Vg — Re(2Ig) + Vg = 0 (1-1)
But
Ie J
Ig = — since I = I
Bac

Thus the emitter current through transistor Q, is determined directly from Equa-
tion (1-1) as follows:

_ _Vee — Ve
2Rg + Rin/Bac

where .V{ = 0.6 V for silicon transistors
W5z = 0.2 V for germanium transistors
Generally, Ri,/Bac << 2Rg. Therefore, Equation (1-2) can be rewritten as
SR

\\ Ve — Ve |
\kJE 3 2Rg X

Ig

(1-2)

(1-3)

From Equation (1-3) we see that the value of Ry sets up the emitter current in
transistors Q; and Q, for a given value of Vg. In other words, by selecting a
proper value of Rg, we can obtain a desired value of emitter current for a knov
value of —Vgg. Notice that the emitter current in transistors Q, and Q, is indepe
dent of collector resistance Rc.

Next we shall determine the collector-to-emitter voltage V¢i. The voltage
the emitter of transistor Q, is approximately equal to — Vg if we assume tl
voltage drop across R, to be negligibly smaN. Knowing the value of emitter
current Ix (=I¢), we can obtain the voltage at the collector V¢, as follows:

Ve = Vee — Rele
Thus the collector-to-emitter voltage Vg is
Vee = Ve — Vg

= (Vee — Rele) — (—Vpgg)
]I Vee = Vee + Ve — Rele (1-4)



AC Analysis:

To perform ac analysis to derive the expression for the voltage gain Ad and the input resistance
Ri of the differential amplifier shown in Figure 1-2:

1. Set the dc voltages + Vcc and -VEE at zero.

2. Substitute the small-signal T-equivalent models for the transistors.

Figure 1-4(a) shows the resulting ac equivalent circuit of the dual-input, balanced- output
differential amplifier.

(a)

(a) Voltage gain: The following should be noted about the circuit in Figure 1-4(a):
1. Ig1 =lgy; therefore, rey = rep. For this reason, the ac emitter resistance of transistor Q1
and Q2 is simply denoted by re.

2. The voltage across each collector resistor is shown out of phase by 180° with respect to
the input voltages vin: and vinp. This polarity assignment is in accordance with the
common-emitter configuration.

3. Note the assigned polarity of the output voltage vo. This polarity simply indicates that
the voltage at collector C, is assumed to be more positive with respect to that at collector
C,, even though both of them are negative with respect to ground.



Writing Kirchhoff's voltage equations for loops 1 and 1I in Figure 1-4(a) gives u
Vin1 — Rintipy = Peiey — Reliay + i) = 0 (1-5

Vin2 — Rin2ips — reiea — Relicy + i2) = 0 (1-€

Substituting current relations iy = ie1/Bac and iy = ie2/Bac yields
Vin1 —~ Rin1 fey = Feley — Rglioy + i) = 0
Bac
Rin2 , p y
Vina — =22 i — Feiy — Rgliey + i2) = 0
Buac

Generally, R, i/Bac and Rj, 2/ Bac values are very small: therefore, we shall neglec
them here for simplicity and rearrange these equations as follows:
(re + Rg)ioy + (Rg)iea = Uja (1
(Rg)iey + (re + Rp)iez = Uin2 (1

Equations (1-7) and (1-8) can be solved simultaneously for i,, and i, by usir
Cramer's rule:

Ujn 1 Re \

Vin2 re + Rg

r. + Rg Rg ‘
Rg f PR RE

...
I

el T

(1-9

_ (re + Rp)vin — (RE)Vin2
(re + Re)? = (Rg)?

Similarly,

re + Rg Ui
Re _ Uinz
re + Rg Rg '
Rg re + Rg

in =

(1-9b)

_ e + Reg)Uinz — (Rg)Vinn
(r. + Re)» — (Rg)?

The output voltage is
Up = Ue2 =™ Un
= —Regizz — (—Rcicr)
= Rcicy — Rcei

= Rec(ler — iez) since i. = i,

(1-10)

Substituting the current relations i, and /., in Equation (1-10), we get

< |'(ﬂ- + Rp)Uin 1 — \REIVin2 _ (re + Re)Vin2 — (Rp)Uin |]
r. + Rp) — (Rg)? (re + Rg)? — (Re)*
e + Re)Winy — Win2) + (Re)Wini — Uin 2)
(re + Rg)* — (Rg)?
(ro + 2RE) Vin 1 — Vin 2)
(r2 + 2r.Re + R% — R})
(re + 2Re)Win 1 — Uin2)
r.(r. + 2Rg)

—RC

- Re (1-11)

= Re¢

R
= —;f (Uin 1 = Win2)



Voltage

~ Vea = Ve1 = Vo
— = Vim T Vinz  Via

Time

()

Figure 1—4' Dual-input, balanced-output differential amplifier.
(a) AC equivalent circuit, (b) Input and output waveforms.

(b) Differential input resistance. Differential input resistance is defined as the equivalent
resistance that would be measured at either input terminal with the other terminal

grounded.

Uin |
ip

Uin 2=0
Vin |
i( | /ﬁnc

Substituting the value of i, from Equation (1-9a), we get

Uin 2=0

ﬁncvin |
(re + Rp)viny — (Rg)0)
(r. + Re)* — (Rg)?
_ Buclr2 + 2r.Rg)
(’r + RI~)

_ Bncrr(rr + 2Rg)

(rr + RI)
Generally, Ry == r., which implies that (., + 2Rg) = 2Rg and (r, + Rg) = Rg.
Therefore, Equation (1-13) can be rewritten as

Ry =

(1-13)

R

R,‘ =
' (Rg) (1-14)
Ry = 2Bnc’0
Similarly, the input resistance R;» seen from the input signal source v;, » is defined
as
R, = Lin2
Ip2 | Vini=n
_ Uin 2
irZ/Bnc Uin 1=0
Substituting the value of i, from Equation (1-9b), we obtain
Ry = BacVin 2
7 (re + Rp)vinz — (Re)0)
(re + Rg) — (Rp) T (1-15)
P “+ y
Ry = ﬂncrr(" 2Rg)

(rr + RE)



However, (r. + 2Rg) =2Rg,and (r. + Rg) = Reif R >>r.. Therefore, Equation
(1-15) can be rewritten as

. Bncrc(ZRE)
Rjp=
Rg (1-16)
Riz» = 2Bacr.

(c) Output resistance. Output resistance is defined as the equivalent resistance that would
be measured at either output terminal with respect to ground. Therefore, the output
resistance Ro; measured between collector C; and ground is equal to that of the collector
resistor Rc. Similarly, the output resistance R, measured at collector C, with respect to
ground is equal to that of the collector resistor R;. Thus

Ro1= Ro2 = Rc

FET DIFFERENTIAL AMPLIFIERS

In the differential amplifier configurations just discussed we have used BJTs. But if we
require very high input resistance, we can use FETSs instead. Fortunately, the voltage-gain
equations derived for these configurations using BJTs can also be used for configurations
using FETSs, except for the following replacements:

R(' — [{D

For instance, the voltage gain of the JFET dual-input, balanced-output differential
amplifier obtained from Equation (1-12) is

Rp
= e .L.'mRI)

l-)(d l ’/.Iw"l”

- l."('

Ay



TABLE 1-1 PROPERTIES OF THE DIFFERENTIAL AMPLIFIER CIRCUIT CONFIGURATIONS

Conliguration Clrount Voltage gain ml::mu n?l‘:::‘x:o
f Ve

I Dual inpur,

R Ry = 28,1 Ry * R,
halunced output e " wele of ¢

fe nt’ = :an'o RQI o .(‘

2. Dual input,

R Ry = 28,1,
unbalinced output ¢ uw "W

Ry * 20,1, R, = Rg

1 Single input, : Ro = Re
balanced output Ag * - Ry = 20,1,

nnl'“('

4, Single input,

unbalanced output Ag * 2, Ry = 20,6 R, =R




LEVEL TRANSLATOR:

From the results of the cascaded differential amplifier, the following observations can be made:
1. Because of the direct coupling, the dc level at the emitters rises from stage to stage. This
increase in dc level tends to shift the operating point of the succeeding stages and, therefore,
limits the output voltage swing and may even distort the output signal..

Therefore, the final stage should be included to shift the output dc level at the second stage down
to about zero volts to ground. Such a stage is referred to as a level translator or shifter.

+Vee

Input

Cutput
—Vee
(a)
Input
Ry

—Vee

(b} (c)

Figure 1-20 Level translator circuits. (a) Emitter follower with
voltage divider. (b) Emitter follower with constant current bias.

(c) Emitter follower with current mirror.

The voltage at the junction will be zero by selecting proper values of R; and R,. Better results are
obtained by using an emitter follower either with a diode constant current bias or a current mirror
instead of the voltage divider, as shown in Figure 1-20(b) and (c), respectively.



The output stage is generally a push-pull or push-pull complementary-symmetry pair.

Inverting and Non-inverting Inputs

In the differential amplifier circuit the non-inverting input because a positive voltage vi,; acting
alone produces a positive output voltage. This can be seen from voltage-gain equation (1-1 1).
Similarly, the positive voltage vi,, alone produces a negative output voltage; hence viy; is called
the inverting input [see Equation (1-11)]. Consequently, the base terminal B; to which viq; is
applied is referred to as the non-inverting input terminal, and the base terminal By is called the
inverting input terminal.

SCHEMATIC SYMBOL

. V2
Inverting

input

S Figure 2—4 Schematic symbol

" for the op-amp.

inout v,

In Figure 2-4,
v, = voltage at the noninverting input (volts)

v, = voltage at the inverting input (volts)

output voltage (volts)

S
I

All these voltages are measured with respect to ground.
A = large-signal voltage gain, which is specified
on the data sheet for an op-amp

THE IDEAL OP-AMP

An ideal op-amp would exhibit the following electrical characteristics:

1. Infinite voltage gain A.

2. Infinite input resistance R, so that almost any signal source can drive it and there is no loading
of the preceding stage.

3. Zero output resistance R, so that output can drive an infinite number of other devices.

4. Zero output voltage when input voltage is zero.

5. Infinite bandwidth so that any frequency signal from 0 to «o Hz can be amplified without
attenuation.

6. Infinite common-mode rejection ratio so that the output common-mode noise voltage is zero.
7. Infinite slew rate so that output voltage changes occur simultaneously with input voltage
changes.



EQUIVALENT CIRCUIT OF AN OP-AMP

The output voltage is

Vo = AUiyy = AV — 12)

Where A = large-signal voltage gain
vig= difference input voltage

V1= voltage at the non-inverting input terminal with respect to ground
Vo= voltage at the inverting terminal with respect to ground

Inverting Va

; O
input {
Via

Noninverting Y1

input

+Vee

Qutput
Vo = Avy

Figure 3-7 Equivalent circuit of an op-amp.

IDEAL VOLTAGE TRANSFER CURVE

Positive saturation
voltage + V,,, < +Vgc

Slope = A

“Viy

— -

+Vig

Negative saturation
voltage — V ., <— Vg

Figure 3-8 ldeal voltage

transfer curve.



OPEN-LOOP OP-AMP CONFIGURATIONS
1. Differential amplifier

2. Inverting amplifier

3. Non-inverting amplifier

The Differential Amplifier

v, = A(Uin1 — Uin2)

+Vee

Vo = A(Vmi

R_=2kQ

~NMge

|
V.

"2| Signal
— | source

Figure 3-9 Open-loop differential amplifier.

The Inverting Amplifier

—vinQ’
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Figure 3-10
The Non-inverting Amplifier
Vo = Ay,
g
:
R =
Signal '\ L 2%8
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amplifier.

Inverting amplifier.

Figure 3-11 Noninverting



BLOCK DIAGRAM REPRESENTATION OF FEEDBACK CONF1GURA TIONS

An op-amp that uses feedback is called a feedback amplifier. A closed-loop amplifier can be
represented by using two blocks, one for an op-amp and another for a feedback circuit. There are
four ways to connect these two blocks. These connections are classified according to whether the
voltage or current is fed back to the input in series or in parallel, as follows:

1. Voltage-series feedback

2. Voltage-shunt feedback

3. Current-series feedback

4. Current-shunt feedback

Op-amp Vo §RL vm@ i,* Op-amp Ve g R,

¥o

v Feedback v Feedback v
: circuit 2 circuit e
B s -
(a) (b)
lin 18

Op-amp i Vi g i,* Op-amp i
+ > l E
v,nQ~> R, § R

Feedback Feedback

. circuit circuit

- -
(c) . (d)

Figure 4-1 Feedback configurations. (a) Voltage-series. (b)
Voltage-shunt. (¢) Current-series. (d) Current-shunt. Arrows
indicate the signal flow directions.



VOLTAGE-SERIES FEEDBACK AMPLIFIER

The schematic diagram of the voltage-series feedback amplifier is shown in Figure

4-2. The op-amp is represented by its schematic symbol, including its large-signal voltage gain
A, and the feedback circuit is composed of two resistors, R; and Re.

+Viee

(-
—VWW\—
X
>
P2
al
<

|
: | Figure 4-2 Voltage-series
% : - feedback amplifier (or nonin-
| sy verting amplifier with feed-
Lo _JrQ— 2$rcu?f back).

The circuit shown in Figure 4-2 is commonly known as a non-inverting amplifier with feedback
(or closed-loop non-inverting amplifier) because it uses feedback, and the input signal is applied
to the non-inverting input terminal of the op-amp.

; _ i
open-loop voltage gain (or gain without feedback) A = b—_;
; Vo
closed-loop voltage gain (or gain with feedback) Ar = =
in

v

gain of the feedback circuit B = ;[

where vj, = input voltage
vi= feedback voltage
vig= difference input voltage

it will be performed by computing closed-loop voltage gain, input and output resistances, and the
bandwidth.



4-3.2 Closed-Loop Voltage Gain

As defined previously, the closed-loop voltage gain

Jo
Ap = :—
However, by Equation (3-9),

Up = Al — 1)
Referring to Figure 4-2, we see that
Uy = Uin

Rlvn
Uy =

Vf = ———— since R; >> R
2 'f Rl 4. RF ] |

Therefore,

Rearranging, we get

Sy AR, + Rp)vi,
R, + Rr + AR,

Thus

= B - AR, + Ry) ; ’
ArF = o By i iR (exact) (4-2)

Generally, A is very large (typically 10°). Therefore,
AR, > (R, + Rr) and (R + RF + AR)) = AR,

Thus

_ U _ Re s, :
AF_uin—l+R. (1deal) (4-3)

Equation (4-3) is important because it shows that the gain of the voltage- series feedback
amplifier is determined by the ratio of two resistors, Rg, and Ry

Another interesting result can be obtained from Equation (4-3). As defined previously, the gain
of the feedback circuit (B) is the ratio of v; and vo. Referring to Figure 4-2, this gain is



B=-L

Vo (4-4)
__ R
" R, + Rr
Comparing Equations (4-3) and (4-4), we can conclude that
Af = é (ideal) (4-5)

Finally, the closed-loop voltage gain AF can be expressed in terms of open- loop gain A and
feedback circuit gain B as follows. Rearranging Equation (4-2), we get

R, + R¢
A

—R| +RF+ AR,
R, + Rr R, + Rf

Using Equation (4-4) yields

(4-6)

where AF = closed-loop voltage gain

A = open-loop voltage gain

B = gain of the feedback circuit

AB = loop gain

A one-line block diagram of Equation (4-6) is shown in Figure 4-3. This block diagram
illustrates a standard form for representing a system with feedback and also indicates the
relationship between different variables of the system. The block-diagram approach helps to
simplify the analysis of complex closed-loop networks, particularly if they are composed of non-
resistive feedback circuits.

Summing junction

A —- Y,
Figure 4-3 Block diagram
. representation of noninverting
B amplifier with feedback.




Difference Input Voltage Ideally Zero:

Uy

Vid =
! A

Since A is very large (ideally infinite),

Vg =0 (4-7a)
That is,

U = Uy (ideal) (4-7b)

Equation (4-7b) says that the voltage at the non-inverting input terminal of an op-amp is
approximately equal to that at the inverting input terminal provided that A is very large. This
concept is useful in the analysis of closed-loop op-amp circuits. For example, ideal closed-loop
voltage gain Equation (4-3) can be obtained using the preceding results as follows. In the circuit

of Figure 4-2,

Uy = Uin
U: = UI
N /(|U‘,
R, + Rg

Substituting these values of v, and v, in Equation (4-7b), we get

e R|U(, ;
il R, + Ry
That 1s,
Uy R!‘
—— it S Ses
AF Uin l RI

Input Resistance with Feedback :
Figure 4-4 shows a voltage-series feedback amplifier with the op-amp equivalent circuit. In this

circuit R; is the input resistance (open loop) of the op-amp, and Rig is the input resistance of the
amplifier with feedback. The input resistance with feedback is defined as

Rie=Vin/iin =Vin/(Vid/Ri)



v v

Figure 4-4 Derivation of input resistance with feedback.

However,
R N S,
- Uid - A an vo - I + AB Um
Therefore,
Uin
Rir = R Vol A
Uin :
= AR Avi /(1 + AB) (4-8)
= Ri(1 + AB)

This means that the input resistance of the op-amp with feedback is (1 +AB) times
that without feedback.

Output Resistance with Feedback :

Output resistance is the resistance determined looking back into the feedback amplifier from the
output terminal as shown in Figure 4-5. This resistance can be obtained by using Thevenin’s
theorem for dependent sources. Specifically, to find output resistance with feedback Rqr, reduce
independent source Vi, to zero, apply an external voltage v,, and then calculate the resulting
current io. In short, the ROF is defined as follows: Ror=V/i,



+Ve

v Roe V

Figure 4-5 Derivation of output resistance with feedback.

Writing Kirchhoff's current equation at output node N, we get
in = ia + ih
since [(Rr + R)) || R] > R, and i, >> i,. Therefore,
iu =14
The current i, can be found by writing Kirchhoff’s voltage equation for the output
loop:

Up — Roia = Avid =0

. _ U — Avid
==
o
However,
Uig = U1 — U2
= () — Ur
o Rlvu = —BU
R, + Rg %
Therefore,
v, + ABu,



Substituting the value of i, in Equation (4-9a), we get

vll
(v, + ABv,)/R,

. Ry
" 1+ AB

R()f“ =
(4-9b)

Bandwidth with Feedback :

The bandwidth of an amplifier is defined as the band (range) of frequencies for which the gain
remains constant.

108 T T T T 1
2 X 10°
108
104

10°

102}

Voltage gain

10

Figure 4-6 Open-loop gain

1 | | ] L |
0100 1k 10k 100k 1m 1om versus frequency curve of the

o Frequency (Hz) 741C.

107!

—

The frequency at which the gain equals 1 is known as the unity gain—bandwidth (UGB). The
relationship between the break frequencyfy, open-loop voltage gain A, bandwidth with feedback
fr, and the closed-loop gain Ar can be established as follows. Since for an op-amp with a single
break frequencyfy, the gain-bandwidth product is constant, and equal to the unity gain bandwidth
(UGB), we can write,



UGB = (A)(f)) (4-10a)

where A = open-loop voltage gain
f» = break-frequencgy,of an op-amp
or, alternatively, only fgr*ingle break frequency op-amp,

- UGB = (Ap)(fr) (4-10b) -

where Ag = closed-loop voltage gain
fr = bandwidth with feedback
Therefore, equating Equations (4-10a) and (4-10b),

(A)(fo) = (AR)(fF)

or

(A f, '
fr= T{—’ (4-10c)

However, for the noninverting amplifier with feedback,

A
1 + AB

AF:

Therefore, substituting the value of Ar in Equation (4-10c), we get

£ = (A)f,)
JE™ AI(1 + AB)
or ,
fr = f,(1 + AB) (4-10d)

Equation (4-10d) indicates that the bandwidth of the noninverting amplifier with feedback,fF, is
equal to its bandwidth without feedbackqfO, times (1 + AB).

Total Output Offset Voltage with Feedback :

In an op-amp when the input is zero, the output is also expected to be zero. However, because of

the effect of input offset voltage and current, the output is significantly larger, a result in large
part of very high open-loop gain. Since with feedback the gain of the non-inverting amplifier

changes from A to A/(1 + AB) [Equation (4-6)1, the total output offset voltage with feedback
must also be 1/(1 + AB) times the voltage without feedback. That is,

total output offset voltage without feedback
- [ + AB

( total output offset )
voltage with feedback

or

= Ve (4-11)
V(mT . 1 ¥ AB




Voltage Follower :
The lowest gain that can be obtained from a non-inverting amplifier with feedback is 1. When

the non-inverting amplifier is configured for unity gain, it is called a voltage follower because
the output voltage is equal to and in phase with the input. In other words, in the voltage follower
the output follows the input. Since the voltage follower is a special case of the non-inverting
amplifier, all the formulas developed for the latter are indeed applicable to the former except that
the gain of the feedback circuit is 1 (B =1). The applicable formulas are

A[- = 1
I(,,-' — /"?,
R
R‘_ = =2
»F A
Jr = Af,
v = XV

A
since (1 + A) = A.

The voltage follower is also called a non-inverting buffer because, when placed between two
networks, it removes the loading on the first network.

VOLTAGE-SHUNT FEEDBACK AMPLIFIER:

Figure 4-8 shows the voltage-shunt feedback amplifier using an op-amp. The input voltage
drives the inverting terminal, and the amplified as well as inverted output signal is also applied to
the inverting input via the feedback resistor RF. This arrangement forms a negative feedback
because any increase in the output signal results in a feedback signal into the inverting input,
causing a decrease in the output signal.

R, v, Re
AMAN- AN
— —
R,, o lin Igo ‘ g +Vee
<Ry +
v =
°+ C“') vin 1
v R L
ley T ~Vee j.
Feedback v <7 v
circuit

Figure 4-8 Voltage-shunt feedback amplifier (or inverting am-
plifier with feedback).



Closed-Loop Voltage Gain :
The closed-loop voltage gain AF of the voltage-shunt feedback amplifier can be obtained by
writing Kirchhoff’s current equation at the input node v, (see Figure 4-8) as follows:

iin = ip o IB (4-12a)

Since R; is very large, the input bias current I is negligibly small. For instance,
R; = 2 M and Iy = 0.5 pA for the 741C. Therefore,

lin = i
That is,
Un — U2 _ Uy — U
R~ - R (4-12b)
However, from Equation (3-9),
o gy =R
| 2 A
Sincev, =0V,
, U = — 22
. A
Substituting this value of v, in Equation (4-12b) and rearranging, we get
Vin + Uo/A _ _(Ul)/A) — U
i R, Rp
. (4-13)
Vo :
Ap=— = E (exact)

Uin —R|+RF+AR|

Since the internal gain A of the op-amp is very large (ideally infinity), AR; >> R; + Rg. This
means that Equation (4-13) can be rewritten as

Ap=-2=-2F  (ideal) (4:14)

This equation shows that the gain of the inverting amplifier is set by selecting a ratio of feedback
resistance R to the input resistance R;. Let us now rewrite Equation (4-13) in the feedback form
of Equation (4-6), for a couple of reasons. First, it facilitates analysis of the inverting amplifier
with feedback. Second, it helps compare and contrast inverting and non-inverting amplifier
configurations, as we shall soon see. To begin with, we divide both numerator and denominator
of Equation (4-13) by (R1 + Rg):



__ARg/R, + R¢
- AR,
R, + Rf (4-15)

B AK
I + AB

A[. =

where K = —— dtion fante
R, + R 2 voltage attenuation factor

= : in of the feedback circui

B R, + R, 8ain of the feedback circuit

A comparison of Equation (4-15) with the feedback Equation (4-6) indicates that, in addition to
the phase inversion (-sign), the closed-loop gain of the inverting amplifier is K times the closed-
loop gain of the non-inverting amplifier, where K <1.

The one-line block diagram of the inverting amplifier with feedback is shown in Figure 4-9. The
reason for the block diagram is twofold: (1) to facilitate the analysis of the inverting amplifier,
and (2) to express the performance equations in the same form as those for the non-inverting
amplifier.

Summing junction

in

A - -V,

Figure 4-9 Block diagram of inverting amplifier with feedback
using a voltage-summing junction as a model for current sum-
ming. '

To derive the ideal closed-loop gain, we can use Equation (4-15) as follows. If AB>> 1, then

(1+AB)= AB and

Ap = — =
(4-16)



Inverting Input Terminal at Virtual Ground:

Refer again to the inverting amplifier of Figure 4-8. In this figure, the non-inverting terminal is
grounded, and the input signal is applied to the inverting terminal via resistor R1. The difference
input voltage is ideally zero; that is, the voltage at the inverting terminal (v,,) is approximately
equal to that at the non-inverting terminal (v1). In other words, the inverting terminal voltage v
is approximately at ground potential. Therefore, the inverting terminal is said to be at virtual
ground. This concept is extremely useful in the analysis of closed-loop inverting amplifier
circuits. For example, ideal closed- loop gain Equation (4-14)1 can be obtained using the virtual-

ground concept as follows:
(4-17)

ljn = Ip

That 1s.
UVin Uz vy Vo

R, Ry
However,
U, v oV
Therefore,
Vin _ Yo
R, R
or
P GRETIL Rr
f Uin R,

Input Resistance with Feedback :

The easiest method of finding the input resistance is to Millerize the feedback resistor Rg; that is,
split Rg into its two Miller components as shown in Figure 4-10.

In the circuit of Figure 4-10, the input resistance with feedback Ri.=(R1+Rg/(1+A)) || (Ri)

+Vece

AW
)
P

. sk il

l"‘.igure 4—10 Inverting amplifier with Millerized feedback re-
sistor



Since R; and A are very large,

Ryg ‘ .
i+ A Ri=0Q
Hence

Rir = R] (ldcal) (4-19)

Output Resistance with Feedback :

The output resistance with feedback R is the resistance measured at the output terminal of the
feedback amplifier. The output resistance of the non-inverting amplifier was obtained by using
Thevenin’s theorem, and we can do the same for the inverting amplifier. Thévenin’s equivalent
circuit for Ror of the inverting amplifier is shown in Figure 4-11. Note that this Thvenin’s
equivalent circuit is exactly the same as that for non-inverting amplifier (Figure 4-5) because the
output resistance Ror of the inverting amplifier must be identical to that of the non-inverting
amplifier [Equation (4-9b)].

R,

Rot =% 4B

(4-20)
where R, = output resistance of the op-amp

A = open-loop voltage gain of the op-amp

B = gain of the feedback circuit

+Vee

v AN

Figure 4—11 Thévenin’s equivalent circuit for R,r of the invert-
ing amplifier.

Bandwidth with Feedback :
As mentioned previously, the gain bandwidth product of a single break frequency op-amp is
always constant.



fr=f.(1 + AB) (4-21a)
where f, = break frequency of the op-amp
. unity gain bandwidth
open-loop voltage gain

= —USB (true only for the single break frequency op-amp such as the

741).

Substituting the value of f, in Equation (4-21a), we get

fr= ——UEB (1 + AB)

~ (4-21b)
. (UGB)XK)
bn—g
= RFe
where K = R, + R
AK
Ar = 1% AB
fr = UGB for the noninverting amplifier
and
UGB ; ; ; ;
fr= = for the inverting amplifier, since R, = Rpf.

Total Output Offset Voltage with Feedback :

( total output offset ) _ total output offset voltage without feedback
voltage with feedback/ 1 + AB

That is,

*Via

Voot = T AB

(4-22)

where +V,, = saturation voltages
A = open-loop voltage gain of the op-amp
B = gain of the feedback circuit
Rp
il TP
The output voltage of the op-amp without feedback can be either + Vg or — Vi
because of its very high voltage gain A, which is typically on the order of 105,



Note that the Vo1 equation for the inverting amplifier is the same as that for the noninverting
amplifier. This is because, when the input signal vi, is reduced to zero, both inverting and non-
inverting amplifiers result in the same circuit.

Current-to-voltage Converter:
Let us reconsider the ideal voltage-gain Equation (4-14) of the inverting amplifier,

By o A
Vin Rl
Therefore,
‘ U!ll )
Up = — (—_ Rf
) RI N
However, since v, = 0 V and v, = va.
i i
R' in
and
Uop = —imRF (4'23)
-
N
iin
Igp = Ol
-Q Yo —iln RF
R
Igy = 0¢ . N
Figure 4-12 Current-to-volt-
A% age converter.
Inverter:

If we need an output signal equal in amplitude but opposite in phase to that of the input signal,
we can use the inverter. The inverting amplifier of Figure 4-8 works as an inverter if R; = Rg.
Since the inverter is a special case of the inverting amplifier, all the equations developed for the
inverting amplifier are also applicable here. The equations can be applied by merely substituting
(A/2) for (1 + AB), since B = 1/2.



TABLE 4-1
AMPLIFIERS

Parameter

Noninverting amplifier

1. Voltage gain

2. Gain of the
feedback circuit

3, Input resistance

4. Output resistance

5. Bandwidth

6. Total output
offset voltage

B

Iel’

R, + Ry 1+

A
I + AB

(exact)

Ry
R,
R, + R,

1+ (ideal)

R/l + AB)

.
I + AB
full

UGB
Ay

ARB)

DIFFEREPETIA L AMPLIFIERS:

1. Differential amplifier with one op-amp
2. Differential amplifier with two op-amps
3. Differential amplifier with three op-amps
Differential Amplifier with One Op-Amp
Figure 4-14 shows the differential amplifier with one op-amp. We will analyze this circuit by

deriving voltage gain and input resistance. A close examination of

SUMMARY OF RESULTS OBTAINED FOR NONINVERTING AND INVERTING

Inverting amplifer

A

= R, +

Sl 4

AR,
R p -t I\)' t
AK R,

T+ AB' where K

‘l"i“l‘\;l (exact)

R, + R,

R,
R

(ideal)

- Ry + Ry

AB)
(UGB)(K)
Ay
%

At

1+ AB

R, Vs, Re
A AW~
+
v, +Vee
= Vv
- 8
l A Vo © - (V‘—VV)
AN - Ry
+ R, Vi
v
Y R3 —“VEE RL
Figure 4-14 Differential amplifier with one op-amp. R, = R,

and R[-’ — R}.

Figure 4-14 reveals that differential amplifier is a combination of inverting and non-inverting

amplifiers.



Voltage gain: The circuit in Figure 4-14 has two inputs, vy and vy; we will, therefore, use the
superposition theorem in order to establish the relationship between inputs and output. When v,
=0 V. the configuration becomes an inverting amplifier; hence the output due to vy only is

Ry(v,)

Uy ©
: l\)|

(4-24a)

Similarly, when v, = 0 V, the configuration is a noninverting amplifier having a
voltage-divider network composed of R, and R; at the noninverting input. There-
fore,

0 R;(u“ )
e R, + Ry
and the output due to v, then is
' Ry
Voy ( | + i(!;) vy

That is,
Ry I\”|71‘((/“) “

,(_\ t l(l ( I('

Uoy

Since R, = R> and Ry = Rx,
Rp(vy)

) "2
v, R, (4-24b)
Thus. from Equations (4-24a) and (4-24b). the net output voltage is
Up = Ugy + Uuy
o l(/ R, (‘l:‘w’
U, — 3 (U — Uy) = — — y
R, R,
or the voltage gain
£, — v, /\)/
'S R e = 25
. Uyy l‘)l iz

Nolctlhul the gain of the differential amplifier is the same as that of the inverting
amplifier. k

Input resistance: The input resistance Rjr of the differential amplifier is the resistance
determined looking into either one of the two input terminals with the other grounded. Therefore,
with vy = 0 V, the circuit in Figure 4-14 is an inverting amplifier the input resistance of which is
Rirx =R1
Similarly, with v,=0 V. the differential amplifier of Figure 4-14 becomes a non-inverting
amplifier whose input resistance can then be written as
Riry =R2+R3



Differential Amplifier with Two Op-Amps:

Voltage gain: A close examination of the circuit of Figure 4-16 shows that it is composed of two
stages: (1) the non-inverting amplifier, and (2) the differential amplifier with unequal gains. By
finding the gain of these two stages, we can obtain the overall gain of the circuit as follows:

The output v, of the first stage is

v, = (1 + ’—;32) vy (4-27a)

+ g R,
v, r—ovo-(1 + ?‘)an
> Vuy +Vee
+ <+ vV, R‘
Al AN
Vy
—Vge
AAAA~
Ry~ R,

Figure 4-16 Differential amplifier with two op-amps.

By applying the superposition theorem to the second stage, we can obtain the
output voltage:

N RF(Uz) E[_‘_
v = — =2 4 (1+ R.) o, (4-27b)
Substituting the value of v, from Equation (4-27a), we get
_ _ (Re ( Ry ( RF)
Vo (R|> 1+ R2) g L R, Us

Since R; = Ry and Rr = R,
R
U, = (l + R#T)(Ur - v_v)

Therefore,
-2 =1+ (4-28)

where v,y = v, — vy.



Input resistance: The input resistance R of the differential amplifier is the resistance
determined looking into either one of the two non-inverting input terminals with the other
grounded (see Figure 4-16). Note, however, that the first stage (Al) is a non-inverting amplifier;
therefore [from Equation (4-8)j, its input resistance is

Riry = Ri(1 + AB) (4-29a)
where R; = open-loop input resistance of the op-amp
__ R
g R, + R;

Similarly, with v, shorted to ground (v, = 0 V), the second stage (A;) also becomes
a noninverting amplifier whose input resistance can then be written as

Riex = Ri(1 + AB) (4-29b)
where R; = open-loop input resistance of the op-amp
__ R
B=R+R:

However, since R; = Ry and Ry = R;, the Ry, # Rir,. This is the drawback of the
differential amplifier of Figure 4-16. Nevertheless, with proper selection of com-
ponents, both Rz and R, can be made much larger than the source resistances
so that the loading of the input sources does not occur.

Differential Amplifier with Three Op-Amps:

Voltage gain: The differential op-amp of Figure 4-17 consists of two stages. The first stage is
composed of op-amps A; and A, while the second stage is formed by op-amp As. Therefore, to
find the overall voltage gain Ap of the amplifier, the voltage gain of each stage must be
determined. To begin with, the first stage can be viewed as two separate differential amplifiers,
as shown in Figure 4-18. The output voltages of these differential amplifiers can be found by
applying the superposition theorem. For Figure 4-18(a),

_2R4+Rs Ry
and for Figure 4-18(b),
+
< At il i (4-30b)

= —py, — — V.,
“TRtRs " Ryt Rs"
However, the output voltage of the first stage is

Vg = Uz — U



+Vee
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m
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»
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+ <
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v ~Vee

First stage - R Second stage————
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Figure 4—17 Differential amplifier with three op-amps.

(a) (b)

Figure 4-18 Deriving the voltage gain of the first stage of the
circuit in Figure 4-17.



Therefore, from Equations (4-30a) and (4-30b),

_2R4 + R;s R,
Uzt Re + R Uy — vy) + R+ R (v; — vy)
_ 2R, + Rs o, Ry
R4 + RS xy R4 S R5 Uz
Simplifying and rearranging, the voltage gain of the first stage is
-liz_,_ . 2R4 + R5
Ury —RS (4-30¢)
Next, using Equation (4-25), the gain of the second stage is
Y _ _Rr
o5 R, (4-30d)
Thus, from Equations (4-30c) and (4-30d), the overall voltage gain is
A B8 (M) Re
ny Uzt R5 R|
or
v 2R\ R
D s, 1 Rs) R, (4-31)

Input resistance: The input resistance Rir of the differential amplifier in Figure 4-17 is the same
as the input resistance of the first stage, that is, the resistance determined at input vy and vy,

looking into the circuit with the other terminal grounded.
In Figure 4-18a, for instance, when v, is reduced to zero, that is, when vy, is grounded, the circuit

is a non-inverting amplifier. Applying the concepts developed for the non-inverting amplifier,
the input resistance determined at input vy is

_ Ry + Rs)
Rir = R,-(l + A 2Re + Rs (4-32)

Similarly, the input resistance determined at input vy will be the same as that given in Equation
(4-32).



DC and AC characteristics:
DC characteristics of Op-Amp
1. INPUT OFFSET VOLTAGE

Input offset voltage Vio is the differential input voltage that exists between two input terminals
of an op-amp without any external inputs applied. In other words, it is the amount of the input
voltage that should be applied between two input terminals in order to force the output voltage to
zero. Let us denote the output offset voltage due to input offset voltage Vio as Voo. The output
offset voltage Voo is caused by mismatching between two input terminals. Even though all the
components are integrated on the same chip, it is not possible to have two transistors in the input
differential amplifier stage with exactly the same characteristics. This means that the collector
currents in these two transistors are not equal, which causes a differential output voltage from the
first stage. The output of first stage is amplified by following stages and possibly aggravated by
more mismatching in them.

I
Vie

{a) (b)

Figure 5-1 (a) Input offset voltage in an op-amp. (b) Output
offset voltage in an op-amp.

Offset-Voltage Compensating Network Design
The op-amp with offset-voltage compensating network is shown in Figure 5-3. The
compensating network consists of potentiometer R, and resistors R, and Re.

Figure 5-3 Op-amp with off-
set voltage-compensating net-
work.




To establish a relationship between Vio, supply voltages, and the compensating components, first
Thevenize the circuit, looking back into R, from point T. The maximum Thevenin’s equivalent
resistance Rmax, occurs when the wiper is at the center of the Potentiometer, as shown in Figure.

+~Vcc

T

~ VEE
R R ~Vee
_ -tV }

max max cc
a v"\n’: =V

|
<

EE

Supply voltages Vcc and -Vee are equal in magnitude therefore; let us denote their magnitude by
voltage V. Thus Viax= V.

, S T Ry Va2
Cb Vo R. Figure 5-5 Compensating
network with maximum
Thévenin’s equivalent resis-
\> tance and voltage.
R.
V,, — . Vmax

: Rpax + Ry, + R,
where V2 has been expressed as a function of
maximum Thevenin’s voltage Vmax and maximum Thevenin’s resistance, But the maximum
value of V2 can be equal to Vio since V1 — V2 = Vio. Thus Equation (5-1) becomes

= Ke V max
Vio - Rmax + Rb + R,



Assume Ry > Rmax > Rc, Where Rpax = Ra/4. Using this assumption Rpax+Rp+R:=Rp

Therefore
R Vmax
viu P
R,
where
vma.x =V = |V(*(| = |_VEF|
R.V
Vi, =——
¢ Rh

Let us now examine the effect of Vio in amplifiers with feedback. The non-inverting and
inverting amplifiers with feedback are shown in Figure. To determine the effect of Vio, in each
case, we have to reduce the input voltage vi, to zero.

Closed-loop non-
Inverting or inverting amplifier
with v;, = 0 V.

With vin reduced to zero, the circuits of both non-inverting and inverting amplifiers are the same
as the circuit in Figure. The internal resistance Rin of the input signal voltage is negligibly small.
In the figure, the non-inverting input terminal is connected to ground; therefore, assume voltage
V1 at input terminal to be zero. The voltageV2 at the inverting input terminal can be determined
by applying the voltage-divider rule:

R,V
V, =
- R, + R;
Therefore,
vt"' = Rl + RI ‘,‘
Ry
Since ‘/','(, — ’V'l = V':f and V| =0V,
Vie =10 — V5| = V;

Therefore,



"y, ", Va ",

% S P
Ve .TH r\_‘_’il as
A Re
<G -

p—D Vo T4 —
v ' = ) it ( By "-) b
' — -
_—--/I iR, o=, Ry,

+
vin (- Vae i

G—nw

Compensated non-inverting amplifier with feedback

2 .INPUT BIAS CURRENT
An input bias cuent Ig is defined as the average of the two input bias currents, Ig;and Igy, as

shown in Figure that is,

} 2
tp = 1ot Lo

where f5, = dc bias current flowing into the noninverting input
Iy = dc bias current flowing into the inverting input

+Vee
Ig g
-
i
A Val,
— -
la,
Vee

Iy = Ip = Is: Obtaining the expression for the output offset voltage caused by the input
bias current Ig in the inverting and non-inverting amplifiers and then devise some scheme to

eliminate or minimize it.

A, Vv, R,
— AN
( Er P &

x.,,l

Ve = OV assumed

'“‘T

— Valy

. : ()L_leul offset voltage due to input bias current in a
noninverting or inverting amplifier,



In the figure, the input bias currents ‘81 and 1 are flowing into the non-inverting and inverting
input leads, respectively. The non-inverting terminal is connected to ground; therefore, the
voltage V1 = 0 V. The controlled voltage source A Vio =0 V since Vio=0 V is assumed. With
output resistance Ro is negligibly small, the right end of Rg is essentially at ground potential; that
IS, resistors Ry, and Rg are in parallel and the bias current I, flows through them. Therefore, the
voltage at the inverting terminal is

Vo = (R||Re) g (5-11)
_ R\Rp
Vo = R, + R, I (5-12)
Writing a node voltage equation for node V,, we get
1| + 12 = 132
(5-13)
0-V2 V= V2_Vs
R, = R R

where V,, = output offset voltage due to input bias current
R, = input resistance of the op-amp (see Figure 5-16)
Rearranging Equation (5-13), we get
Vo, _ ( 1 1 |
—R:_‘ =Voles+ =+ —)
Since R; is extremely high (ideally =), 1/R; = 0 siemens. Therefore,

Vo R, + Rf
RF R|R1:

Substituting in Equation (5-14) the value of V, from Equation (5-12), we get

(5-14)

=V2

e (5-15)
1 F 1
Vor, = Rrlp;
From Equation
Vor, = Relp (5-16)

According to Equation (5-16), the amount of output offset voltage V,, is a

function of feedback resistor Ry for a specified value of input bias current /3. The
amount of V,, can be increased by the use of relatively large feedback resistors.
Therefore, the use of small feedback resistors is recommended.
' To eliminate or reduce the output offset voltage V,,, due to input bias current
I, we have to devise some scheme at the input by which voltage V, can be made
equal to V,. In other words, if voltages V) and V, caused by the currents /5 and
Iy, can be made equal, there will be no output voltage V,,;,. From Equation (5-12),
we have

Vi = R,Ig (5-17)



where

R\R
R, + Rr

Equation (5-17) implies that we must express voltage V, at the noninverting
input terminal as a function of lgm;re’ggtor ‘Rou. This can be
accomplished as follows. The input bias current I, does not produce any voltage
at the noninverting input terminal because this terminal is directly connected to
ground (see Figure 5-16). If we could connect the proper value of resistor Roy in

the noninverting terminal, the voltage V, would be
Vi = Romlp ' (5-18)

To have voltage V, equal to V;, the right-hand sides of Equations (5-17) and (5-18)
must be equal; that is,

7

RyIp = Romlp (5-19)
Now if the currents I, and I, are equal, Equation (5-19) implies that
Rp == ROM (5-20)
or
RiRy A
Rt Be Roum (5-21)

Thus the proper value required of an Rpy resistor connected in the nonin-
verting terminal is the parallel combination of resistors R, and Rr. However, the
use of Roy may not completely eliminate the output offset voltage V.1, because the
currents /g and Ip, are not exactly equal. Nevertheless, the use of Rpy will )
minimize the amount of output offset voltage mm'
‘referred to as the offset minimizing resistor (see F:gure_S___l_’Z)

ote that if we reduce both the inputs to zero (that is, v, | = vis2 = 0 V) in
the closed-loop differential amplifier, the resulting circuit becomes the same as in

Figure 5-17. This means that there is no need to use a separate resistor Roy in the

n, v, Re
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E Ry Figure 5-17 Ry reduces the
1 output offset voltage V,,,
caused by the input bias cur-
\v/ rent Iy.
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3. INPUT OFFSET CURRENT
The input offset current /;, is defined as the algebraic difference between two
input bias currents /g, and Iz . In equation form,

L, = |lgy — I (5&

Figure 5—20 Output offset
voltage V,,; caused by the in-
put offset current 7, in an in-
verting or noninverting ampli-
fier. "

Iiéferring to Figure 5-20, we will express the voltages V, and V, as a function
of Iz, and I,, for given values of R, and R, as follows:

Vi = Romlp (5-18)
V;z - Rplgz (5'17)
where
_ _ R\Rg¢
Reia = Rp = R, + Rr

Applying the superposition theorem, we will now find the output offset
voltage due to V, and V; in terms of I, Ig;, and Rr. We know, from Equation
(5-15), that

Vﬂlgz/t&!m

Here the negative sign is used because V, is the voltage at the inverting input
terminal. This output offset voltage V,,,, is due to voltage V; only in terms of I,

and Rr. Similarly, the output offset voltage V,,, due to V, only in terms of /g, and
RpF can be obtained as follows:

R
Voim = Vi1 + ﬁ’;’) (5-23)

where V, = vpltage at the noninverting input terminal

(-5

gain of the noninverting amplifier



Substituting in Equation (5-23) the value of V, from Equation (5-18), we get

R
Vot = Roulm(l + ‘R—T) (5-24)
_ RyRp I R, + Rf
"R+ R R,
Volm = B.Ehl ' (5-25)

Therefore, the maximum magnitude of the output offset voltage due to I, and Ip;

| B

V()Im + VOIJ; = RFIBI = RFIBZ
= Re(lp — In) (5-26)
Vol = RF(Iio)

o

TOTAL OUTPUT OFFSET VOLTAGE -~

We know that in a circuit like the one in Figure 5-19, the output offset voltage V,,,
caused by Vj, could be either positive or negative with respect to ground. Simi-.
larly, the output offset voltage V,,, caused by I, could also be either positive or
negative with respect to ground. If these output offset voltages are of different
polarities, the resultant output offset will be very little. On the other hand, if both
of these output offset voltages are of the same polarity, the maximum amplitude of
the total output offset would be

VooT = Voo Ry Vol.

Voor = (1+ ) Vi + Re
By the same token, in a circuit such as that in Figure 5-21, the total output offset
voltage V,,r can be given by the expression

(5-27)

VuuT = Vrm + Vol,,, (5 28)

VaoT = (l + &) Vio + (RF)lio
R,

THERMAL DRIFT

In previous sections we learned to compensate for the effects of input offset
voltage and input bias currents. In our discussion so far, we have assumed that
the parameters V;,, Iz, and [;, are constant for a given op-amp. However, in
practice, the values of V,,, I, and I, vary with:

1. Change in temperature ,
2. Change in supply voltages: + Ve and — Vig
3. Time



The average rate of change of input offset voltage per unit change in temper-
ature is called thermal voltage drift and is denoted by AV,,/AT. It is expressed in
#V/°C. By the same concept, we can also define the thermal drift in the input
offset current and input bias current as follows:

AAI,}"} = thermal drift in the input offset current (pA/°C)
Alg e - i i A/C
AT = thermal drift in the input bias current (pA/°C)
% = thermal voltage drift

il;‘ = thermal current drift

Error Voltage

Let us define this maximum
possible change in total output offset voltage AV,,ras the error voltage and denote
it by Eu- o

AVar = (1 + ﬁ—’l)(‘;VT) AT+ ®p) (5) aT / o
E,=(1+ %‘lf)(%) AT + (Ry) (il‘T"’) AT /
SVRR: It is defined as the
20 log (S\/ﬁ) = 20 log <A—V,:7_A—17) = 20 log (I—S_O;IL—WV) = 20 log (-:—5(—)%)

= 76.48 dB
Similarly, an SVRR of 96 dB is equivalent to 15.85 uV/V as follows.

20 log(1/SVRR) = 96 dB,

o8 (5vRR) = 2

1

e 5 X
SvRrR ~ V"

A
1048

15.85 uV/V

SVRR =



CMRR

Generally, it can be defined as the ratio of the differential gain Ap to the
common-mode gain A.y, that is,
Ap
Acm

CMRR = (5-38)
Note that, in Figure 5-33(a), Ap is equal to the internal gain A of the op-amp.

The CMRR can also be expressed as the ratio of the change in input offset
voltage to the total change in common-mode voltage. Thus

Vio
CMRR = — (5-39)

From Equations (5-37) and (5-38), we can then establish the relationship

between the v, and CMRR:

Ap __Ap
Acm Uocm/vcm

CMRR =

= Al  (5-40)

Uoem

_ ApUcm
Voem = CMRR

AC CHARACTERISTICS OF OP-AMP
Two major sources are responsible for capacitive effects on op-amp.

1. Physical characteristics of semiconductor devices. Recall that op-amps are
composed of BJTs and FETs which contain junction capacitors. These
junction capacitors are very small (on the order of picofarads) and act as
open circuits at low frequencies but take finite values at higher frequencies.
In fact, as frequency increases, the reactances of these capacitors decrease.

2. The internal construction of the op-amp is a second source of capacitive
effects. In op-amps a number of transistors as well as resistors and some-
times a capacitor are integrated on the same material, called a substrate. In
fact. the substrate acts as an insulator and helps to separate these compo-
nents. The various components are connected by conducting paths, and the
paths are separated by insulators. However, whenever two conducting
paths are separated by an insulator, it acts as a capacitor. This means tho!
because of its construction the op-amp may contain a number of such stray
capacitors.



’l'hc cumulative effect of these capacitors due to the characteristics of semi-
conductor devices and the internal construction of the op-amp causes the gain (0
decrease as the freauencv increases.)

Figure High-frequency
model of an op-amp with single
break frequency.

OPEN-LOOP VOLTAGE GAIN AS A FUNCTION OF
FREQUENCY :

Let us now obtain an expression for the gain as a function of frequency. From
Figure 6-2, using a voltage-divider rule, we get
—JXc

Yo = R, — jXc (Avia)

Since —j = 1/j and X¢c = 1/27fC,

. 1/j2@wfC
° R, + 1j2wnfC

! Avy
1 + j2@fR,C

Hence the open-loop voltage gain is

(Aviq)

(Vo)

(Via)

Aor(f) =

"
Aolf) = T 72 2fR.C

Let f, = 1/27R,C; then

A
Ao = TR

where Ao (f) = open-loop voltage gain as a function of frequency

A = gain of the op-amp at 0 Hz (dc)

f = operating frequency (Hz)

f, = break frequency of the op-amp (Hz) ° "
Note that the break frequency f, depends on the value of C and on output resis-
tance R,. Therefore, f, is fixed for a given op-amp.



The 6pen-|oop gain magnitude is
: A

and phase angle

)

¢(f) = —tan”! (‘ff')
CIRCUIT STABILITY

A circuit or a group of circuits connected together as a system is said to be stable if
its output reaches a fixed value in a finite time. On the other hand, a circuit/
system is said to be unstable if its output increases with time instead of achieving a
fixed value. In fact, the output keeps on increasing until the system breaks
down. Therefore, unstable systems are impractical and need to be made stable.
Any system whose stability is to be determined can be represented by the
block diagram of Figure 4-3. In fact, in control system analysis the block diagram
of Figure 4-3 is the standard form of representing a system. The standard block
diagram is composed of two blocks. as shown in Figure 6-7. The block between
the output and the input is referred to as the forward block (a block in the forward
path), and the block between the output signal and the feedbzck signal is referred
to as the feedback block (a block in the feedback path). The content of each block
commonly referred to as the transfer function (in control system theory) depends

on the complexity of a system.

Summing

junction
Vin + v
Input [ Ao (f) = Out;ut
Break feedback B | Figure A typical closed-
here to obtain Vi | g y-p :

\oopsgeln Feedback 0op system (noninverting am-
signal plifier).
Vo . -
Aol =25 if vy =0
m

where Ao (f) = open-loop voltage gain
Similarly the closed-loop gain Af is given by

Uy
AF —_— U_m
- AoL
AF = T3 QAo)(B)




Once the magnitude versus frequency and the phase angle ver-
sus frequency plots are drawn, system stability may be determined as follows:

Method 1.
Determine the phase angle when the magnitude of (Aor) (B)isOdBor 1. If
the phase angle is > —180°, the system is stable. However, for some sys-

tems the magnitude may never be 0.dB; in that case, method 2 must be used
to determine the system stability.

Method 2.
Determine the magnitude of (Ao) (B) when the phase angle is —180°. If the

magnitude is negative decibels, W. However, some-
tw phase angle of a system may never reach’ —180°; under such
conditions, method 1 must be used to determine the system stability.

SLE_Vy RATE: It is the maximum rate of change of output voltage with respect to time,usually
specified in V/us

Slew Rate Equation

Since [he S " rate ¢ 1 a”! Ilﬁ
] lew at on a data ShCCl IS gem:r T I lt‘.(Lle' a Unity g I '
S o ik 21 LS am, let us

consider the voltage e PR T
oltage follower shown in Figure 6-11. Furthermore, let us assu
: assume

Uin = Vp Sin wt
or

v, = Vp sin wr
The rate of change of the output is

dv,
7 Vew cos wit

and the maxi rate = £
¢ maximum rate of change of the output occurs when cos wr I. That i
: Swi = 1. That is,
dv,|  _
(/I |m.n 2 ‘/[’(U
SR = 2#fVe V/s
= 27T_f‘Vp
10% V/us
where SR = slew rate (V/ws)
J = input frequency (Hz)

Ve peak value of the output sine wave (volts)



Deriving the slew rate equation.

Effect of Slew Rate in Applications

" The 741C has a typical slew rate of 0.5 V/us; therefore

28V
05 Vips =~ ks
must be the minimum time between the two zero crossings. Hence the maximum

input frequency fmax at which the output will be distorted is given by

1

) —_(2)(56 ) = 8.93 kHz

+V, I

oV /\%t(us)
|

|

" 56us |

b=
|

|
+14V . :/——\
|
|
oV : —p— 1 (us)
\_/
14V |- |

e——— T ——>
(a) (b)
Figure (a) Open-loop configuration using the 741C. (b) In-

put and output waveforms.



