Unit IV and Unit V

CONTENTS
	S.No
	Topic
	Page. No

	Unit IV

	4.1
	VHDL PROGRAMS FOR LOGIC GATES
	2

	4.2
	ADDER AND SUBTRACTOR
	15

	4.3
	DECODER
	24

	4.4
	COMPARATOR
	28

	4.5
	MULTIPLEXER
	34

	4.6
	DEMULTIPLEXER
	40

	4.7
	ENCODER
	44

	Unit V

	5.1
	FLIPFLOP
	46

	5.2
	COUNTER
	58

	5.3
	SHIFTER
	64

4.1 VHDL PROGRAMS for LOGIC GATES
4.1.1 AND Gate

Circuit diagram:

[image: image1.png]

Truth table:
	Inputs

a b
	Output

c

	 0 0

 0 1

 1 0

 1 1
	0

0

0

1

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity and2_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end and2;

architecture and2_dat of and2_dat is

begin

c<= a and b;

end and2_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity and2_beh is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end and2_beh;

architecture and2_beh of and2_beh is

begin

process(a,b)

begin

if(a='1' and b='1') then c<='1';

else c<='0';

end if;

end process;

end and2_beh;

Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity and2_str is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end and2_str;

architecture and2_str of and2_str is

component and2_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end component;

begin

a1: and2_dat port map(a,b,c);

end and2_str;

expected Waveforms:

[image: image2.emf]a

b

c

 ns 80 90 100 110 120 130 140 150 160 170 180 190 200 210

4.1.2 OR Gate

Circuit diagram:

[image: image3.png]

Truth table:

	Inputs

a b
	Output

c

	 0 0

 0 1

 1 0

 1 1
	0

1

1

1

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity or2_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end or2;

architecture or2_dat of or2_dat is

begin

c<= a or b;

end or2_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity or2_beh is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end or2_beh;

architecture or2_beh of or2_beh is

begin

process(a,b)

begin

if(a='0' and b='0') then c<='0';

else c<='1';

end if;

end process;

end or2_beh;

Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity or2_str is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end or2_str;

architecture or2_str of or2_str is

component or2_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end component;

begin

a1: or2_dat port map(a,b,c);

end or2_str;

expected Waveforms:

[image: image4.emf]a

b

c

 ns 10 20 30 40 50 60 70 80 90 100 110 120 130 140

4.1.3 NOT Gate

Circuit diagram:

[image: image5.png]

Truth table:
	Inputs

a
	Output

c

	0

1
	1

0

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity not2_dat is

port (
a: in STD_LOGIC;

c: out STD_LOGIC);

end not2;

architecture not2_dat of not2_dat is

begin

c<= not a ;

end not2_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity not2_beh is

port (
a: in STD_LOGIC;

c: out STD_LOGIC);

end not2_beh;

architecture not2_beh of not2_beh is

begin

process(a)

begin

if(a='0') then c<='1';

else c<='0';

end if;

end process;

end not2_beh;

Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity nor2_str is

port (
a: in STD_LOGIC;

c: out STD_LOGIC);

end not2_str;

architecture not2_str of not2_str is

component not2_dat is

port(a:in STD_LOGIC;

 c: out STD_LOGIC);

end component;

begin

a1: not2_dat port map(a,c);

end or2_str;

expected Waveforms:

[image: image6.emf]a

c

 ns 30 40 50 60 70 80 90 100 110 120 130 140 150 160

4.1.4. NAND Gate

Circuit diagram:

[image: image7.png]

Truth table:

	Inputs

a b
	Output

c

	 0 0

 0 1

 1 0

 1 1
	1

1

1

0

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity nand2_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end nand2;

architecture nand2_dat of nand2_dat is

begin

c<= a nand b;

end nand2_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity nand2_beh is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end nand2_beh;

architecture nand2_beh of nand2_beh is

begin

process(a,b)

begin

if(a='1' and b='1') then c<='0';

else c<='1';

end if;
end process;end nand2_beh;
Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity nand2_str is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end nand2_str;

architecture nand2_str of nand2_str is

component and2_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end component;

component not2_dat is

port(a: in STD_LOGIC;

c: out STD_LOGIC);

end component;

signal temp:std_logic;

begin

a1:and2_dat port map(a,b,temp);

n1:not2_dat port map(temp,c);

end nand2_str;

expected Waveforms:

[image: image8.emf]a

b

c

 ns 10 20 30 40 50 60 70 80 90 100 110 120 130 140

4.1.5. NOR Gate

Circuit diagram:

[image: image9.png]

Truth table:

	Inputs

a b
	Output

c

	 0 0

 0 1

 1 0

 1 1
	1

0

0

0

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity nor2_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end nor2;

architecture nor2_dat of nor2_dat is

begin

c<= a nor b;

end nor2_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity nor2_beh is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end nor2_beh;

architecture nor2_beh of nor2_beh is

begin

process(a,b)

begin

if(a='0' and b='0') then c<='1';

else c<='0';

end if;

end process;

end nor2_beh;
Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity nor2_str is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end nor2_str;

architecture nor2_str of nor2_str is

component or2_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end component;

component not2_dat is

port(a: in STD_LOGIC;

c: out STD_LOGIC);

end component;

signal temp: std_logic;

begin

a1:or2_dat port map(a,b,temp);

n1:not2_dat port map(temp,c);

end nor2_str;

expected Waveforms:

[image: image10.emf]a

b

c

 ns 10 20 30 40 50 60 70 80 90 100 110 120 130 140

4.1.6. XOR Gate

Circuit diagram:

[image: image11.png]) o~

Truth table:
	Inputs

a b
	Output

c

	 0 0

 0 1

 1 0

 1 1
	0

1

1

0

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity xor2_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end xor2;

architecture xor2_dat of xor2_dat is

begin

c<= a xor b;

end xor2_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity xor2_beh is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end xor2_beh;

architecture xor2_beh of xor2_beh is

begin

process(a,b)

begin

if(a= b) then c<='0';

else c<='1';

end if;
end process;end xor2_beh;

Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity xor2_str is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end xor2_str;

architecture xor2_str of xor2_str is

component or2_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end component;

component not2_dat is

port(a: in STD_LOGIC;

c: out STD_LOGIC);

end component;

component and2_dat is

port (
a: in STD_LOGIC;

 b: in STD_LOGIC;

 c: out STD_LOGIC);

end component;

signal t1,t2,t3,t4:std_logic;

begin

n1:not2_dat port map(a,t1);

a1:and2_dat port map(t1,b,t2);

n2:not2_dat port map(b,t3);

a2:and2_dat port map(t3,a,t4);

r1:or2_dat port map(t2,t4,c);

end xor2_str;

expected Waveforms:

[image: image12.emf]a

b

c

 ns 10 20 30 40 50 60 70 80 90 100 110 120 130 140

4.1.7. XNOR Gate

Circuit diagram:

[image: image13.png]) >

Truth table:

	Inputs

a b
	Output

c

	 0 0

 0 1

 1 0

 1 1
	1

0

0

1

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity xnor2_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end xnor2;

architecture xnor2_dat of xnor2_dat is

begin

c<= a xnor b;

end xnor2_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity xnor2_beh is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end xnor2_beh;

architecture xnor2_beh of xnor2_beh is

begin

process(a,b)

begin

if(a= b) then c<='1';else c<='0';

end if;
end process; end xnor2_beh;

Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity xnor2_str is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end xnor2_str;

architecture xnor2_str of xnor2_str is

component or2_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end component;

component not2_dat is

port(a: in STD_LOGIC;

c: out STD_LOGIC);

end component;

component and2_dat is

port (
a: in STD_LOGIC;

 b: in STD_LOGIC;

 c: out STD_LOGIC);

end component;

signal t1,t2,t3,t4:std_logic;

begin

n1:not2_dat port map(a,t1);

a1:and2_dat port map(a,b,t3);

n2:not2_dat port map(b,t2);

a2:and2_dat port map(t1,t2,t4);

r1:or2_dat port map(t3,t4,c);

end xnor2_str;

expected Waveforms:

[image: image14.png]

4.2.1 half adder

Circuit diagram:

[image: image15.png]-

i : sum

T

DJHY

Truth table:
	 Inputs

 a b
	Outputs

Sum carry

	0 0

0 1

1 0

1 1
	0 0

1 0

1 0

0 1

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity ha2_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

sum, carry: out STD_LOGIC);

end ha2_dat;

architecture ha2_dat of ha2_dat is

begin

sum<= a xor b;

carry<= a and b;

 end ha2_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity ha2_beh is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

sum, carry: out STD_LOGIC);

end ha2_beh;

architecture ha2_beh of ha2_beh is

begin

process(a,b)

begin

if(a=’0’ and b=’0’) then sum<=’0’; carry<=’0’;

elsif (a=’1’ and b=’1’) then sum<=’0’; carry<=’1’;

else

sum<=’1’; carry<=’0’;

end if;

end process;

end ha2_beh;

Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity ha2_str is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

sum, carry: out STD_LOGIC);

end ha2_str;

architecture ha2_str of ha2_str is

component xor2_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end component;

component and2_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end component;

begin

a1: xor2_dat port map(a,b,sum);

a2: and2_dat port map(a,b,carry);

end ha2_str;

4.2.2 full adder
Circuit diagram:

[image: image16.png]llllll

Truth table:
	Inputs

a b c
	Outputs

Sum carry

	000

001

010

011

100

101

110

111
	0 0

1 0

1 0

0 1

1 0

0 1

0 1

1 1

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity fa2_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

sum, carry: out STD_LOGIC);

end fa2_dat;

architecture fa2_dat of fa2_dat is

begin

sum<= (a xor (b xor c));

carry<= ((a and b) or (b and c) or (c and a));

 end fa2_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity fa2_beh is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

sum, carry: out STD_LOGIC);

end fa2_beh;

architecture fa2_beh of fa2_beh is

begin

process(abc)

begin

if(abc=”000”) then sum<='0'; carry<=’0’;

elsif(abc=”111”) then sum<='1'; carry<=’1’;

elsif(abc=”001” or “010”or “100”) then sum<='1'; carry<=’0’;

else

sum<='0'; carry<=’1’;

end if;

end process;

end fa2_beh;

Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity fa2_str is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

sum, carry: out STD_LOGIC);

end fa2_str;

architecture fa2_str of fa2_str is

component xor3_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC

 d: out STD_LOGIC);

end component;

component and2_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end component;

component or3_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

d: out STD_LOGIC);

end component;

signal t1,t2,t3:STD_LOGIC;

begin

a1: xor3_dat port map(a,b,c,sum);

a2: and2_dat port map(a,b,t1);

a3: and2_dat port map(b,c,t2);

a4: and2_dat port map(c,a,t3);

a5: or3_dat port map(t1,t2,t3,carry);

end fa2_str;

4.2.3. half subtractor

Circuit diagram:

[image: image17.png]a Diff
b

L
!) Barrow

Truth table:
	 Inputs

 a b
	Outputs

Diff Barrow

	0 0

0 1

1 0

1 1
	 0 0

 1 1

 1 0

 0 0

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity hs2_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

Diff, Barrow: out STD_LOGIC);

end hs2_dat;

Architecture hs2_dat of hs2_dat is

begin

Diff<= a xor b;

Barrow<= ((not a) and b);

 end hs2_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity hs2_beh is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

Diff, Barrow: out STD_LOGIC);

end hs2_beh;

architecture hs2_beh of hs2_beh is

begin

process(a,b)

begin

if(a='0' and b='1') then Diff<='1'; Barrow<=’1’;

elsif (a='1' and b='0') then Diff<='1'; Barrow<=’0’;

else

Diff<='0'; Barrow<=’0’;

end if; end process; end ha2_beh;

Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity hs2_str is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

Diff, Barrow: out STD_LOGIC);

end hs2_str;

architecture hs2_str of hs2_str is

component xor2_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

component and2_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end component;

component not2_dat is

port (a:in STD_LOGIC;

 c:out in STD_LOGIC);

end component;

signal t:STD_LOGIC;

begin

a1: xor2_dat port map(a,b,Diff);

a2: not2_dat port map(a,t);

a3: and2_dat port map(t,b,Barrow);

end hs2_str;

4.2.4 full subtractor
Circuit diagram:

[image: image18.png]Diff

Truth table:
	Inputs

a b c
	Outputs

Diff Barrow

	000

001

010

011

100

101

110

111
	0 0

1 1
1 1
0 1

1 0

0 0
0 0
1 1

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity fs2_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

Diff, Barrow: out STD_LOGIC);

end fs2_dat;

architecture fs2_dat of fs2_dat is

begin

Diff<= (a xor (b xor c));

Barrow<= (((not a) and b) or (b and c) or (c and (not a)));

 end fs2_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity fs2_beh is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

Diff, Barrow: out STD_LOGIC);

end fs2_beh;

architecture fs2_beh of fs2_beh is

begin

process(abc)

begin

if(abc=”011”) then Diff<='0'; <=’1’;

elsif(abc=”100”) then Diff<='1';Barrow<=’0’;

elsif(abc=”000” or “101”or “110”) then Diff<='0';Barrow<=’0’;

else

Diff<='1'; Barrow<=’1’;

end if;

end process;

end fs2_beh;

Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity fs2_str is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

Diff, Barrow: out STD_LOGIC);

end fs2_str;

architecture fs2_str of fs2_str is

component xor3_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC

 d: out STD_LOGIC);

end component;

component not2_dat is

port(a:in STD_LOGIC;

 c: out STD_LOGIC);

end component;

component and2_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end component;

component or3_dat is

port(a:in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

d: out STD_LOGIC);

end component;

signal t1,t2,t3,t4:STD_LOGIC;

begin

a1: xor3_dat port map(a,b,c,Diff);

a2: not2_dat port map(a,,t1);

a3: and2_dat port map(t1,b,t2);

a4: and2_dat port map(b,c,t3);

a5: and2_dat port map(c,t1,t4);

a6: or3_dat port map(t2,t3,t4,Barrow); end fs2_str;
4.3 DECODER
A digital circuit that converts an input binary code into a single numeric output.
[image: image19.png]ENCODERS AND DECODERS

A o
A o A
A — o

A «— ENCODER DECODER
u

»—
]
]

TTTTTTTI

3-to-8 DECODER

Circuit diagram:

[image: image20.png]a

En—

3x8
Decode
T

y1
[—]
.
I yg
[— ’
_ye

y7

Truth table:

	Inputs
	Outputs

	En
	 a b c
	y0 y1 y2 y3 y4 y5 y6 y7

	0

1

1

1

1

1

1

1

1
	x x x

0 0 0 0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
	0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity decdr3x8_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

y0: out STD_LOGIC;

y1: out STD_LOGIC;

y2: out STD_LOGIC;

y3: out STD_LOGIC;

y4: out STD_LOGIC;

y5: out STD_LOGIC;

y6: out STD_LOGIC;

y7: out STD_LOGIC);

end decdr3x8_dat;

architecture decdr3x8_dat of decdr3x8_dat is

begin

y0<=(not a) and (not b) and (not c);

y1<=(not a) and (not b) and c;

y2<=(not a) and b and (not c);

y3<=(not a) and (b and c);

y4<= a and (not b) and (not c);

y5<= (a and c) and (not b);

y6<= (a and b) and (not c);

y0<= (a and b) and c;

end decdr3x8_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity decdr3x8_beh is

port (a: in STD_LOGIC_VECTOR (2 downto 0);

 en: in STD_LOGIC;

 y: out STD_LOGIC_VECTOR (7 downto 0));

end decdr3x8_beh;

architecture decdr3x8_beh of decdr3x8_beh is

begin

process(en,a)

begin

if(en='1')then

case a is

when "000"=>y<="00000001";

when "001"=>y<="00000010";

when "010"=>y<="00000100";

when "011"=>y<="00001000";

when "100"=>y<="00010000";

when "101"=>y<="00100000";

when "110"=>y<="01000000";

when "111"=>y<="10000000";

when others=>y<="00000000";

end case;

else y<="00000000";

end if;

end process;

end decdr3x8_beh;

Structural Model

--Program for 3 input AND Gate in data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity and3_dat is

port (a: in STD_LOGIC;

 b: in STD_LOGIC;

 c: in STD_LOGIC;

 p: out STD_LOGIC);

end and3_dat;

architecture and3_dat of and3_dat is

begin

p<=a and b and c;

end and3_dat;

--Program for NOT Gate in Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity not2_beh is

port (a: in STD_LOGIC;

 c: out STD_LOGIC);

end not2_beh;

architecture not2_beh of not2_beh is

begin

process(a)

begin

if(a='0') then c<='1';

else c<='0';

end if;

end process;

end not2_beh;

--Program for 3-t0-8 Decoder in Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity decdr3x8_str is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

y0: out STD_LOGIC;

y1: out STD_LOGIC;

y2: out STD_LOGIC;

y3: out STD_LOGIC;

y4: out STD_LOGIC;

y5: out STD_LOGIC;

y6: out STD_LOGIC;

y7: out STD_LOGIC);

end decdr3x8_str;

architecture decdr3x8_str of decdr3x8_str is

component not2 is

port(a:in STD_LOGIC;

 c:out STD_LOGIC);

end component;

component and3_dat is

port(a,b,c: in STD_LOGIC;

 p: out STD_LOGIC);

end component;

signal t1,t2,t3: STD_LOGIC;

 begin

n1:not2 port map(a,t1);

n2:not2 port map(b,t2);

n3:not2 port map(c,t3);

d1:and3_dat port map(t1,t2,t3,y0);

d2:and3_dat port map(t1,t2,c,y1);

d3:and3_dat port map(t1,b,t3,y2);

d4:and3_dat port map(t1,b,c,y3);

d5:and3_dat port map(a,t2,t3,y4);

d6:and3_dat port map(a,t2,c,y5);

d7:and3_dat port map(a,b,t3,y6);

d8:and3_dat port map(a,b,c,y7);

end decdr3x8_str;

expected Waveforms:

[image: image21.emf]a

a(2)

a(1)

a(0)

en

y

y(7)

y(6)

y(5)

y(4)

y(3)

y(2)

y(1)

y(0)

 ns 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0 2 4 6 1 3 5 7 0 2 4 6 1 3 5 7 0

00 01 04 10 40 02 08 20 80 00

4.4 BIT COMPARATOR
Circuit diagram:

[image: image22.png]Comparator
Circuit

aeqb
agth

_altb

Truth table:

	Inputs
	Outputs

	a b
	a lt b a gt b a eq b

	a lt b
a gt b

a eq b
	 1 0 0

 0 1 0

 0 0 1

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity comp4_dat is

port (
a: in STD_LOGIC_VECTOR (3 downto 0);

b: in STD_LOGIC_VECTOR (3 downto 0);

agtb: out STD_LOGIC;

aeqb: out STD_LOGIC;

altb: out STD_LOGIC);

end comp4_dat;

architecture comp4_dat of comp4_dat is

begin

altb<='1' when a<b else '0';

aeqb<='1' when a=b else '0';

agtb<='1' when a>b else '0';

end comp4_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity comp4_beh is

port (
a: in STD_LOGIC_VECTOR (3 downto 0);

b: in STD_LOGIC_VECTOR (3 downto 0);

aeqb: out STD_LOGIC;

agtb: out STD_LOGIC;

 altb: out STD_LOGIC);

end comp4_beh;

architecture comp4_beh of comp4_beh is

begin

process(a,b)

begin

if(a=b) then aeqb<='1';

else aeqb<='0';

if(a>b) then agtb<='1';

else agtb<='0';

if(a<b) then altb<='1';

else altb<='0';

end if;
end if;
end if; end process; end comp4_beh;

Structural Model

--Program for 2 input XNOR Gate in Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity xnor2_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end xnor2_dat;

architecture xnor2_dat of xnor2_dat is

begin

c<=a xnor b;

end xnor2_dat;

--Program for NOT Gate in Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity not2_beh is

port (
a: in STD_LOGIC;

c: out STD_LOGIC);

end not2_beh;

architecture not2_beh of not2_beh is

begin

process(a)

begin

if(a='0') then c<='1';

else c<='0';

end if;

end process;

end not2_beh;

--Program for 2 input AND Gate in Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity and2_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: out STD_LOGIC);

end and2_dat;

architecture and2_dat of and2_dat is

begin

c<= a and b;

end and2_dat;

--Program for 3 input AND Gate in Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity and3_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

p: out STD_LOGIC);

end and3_dat;

architecture and3_dat of and3_dat is

begin

p<=a and b and c;

end and3_dat;

--Program for 4 input AND Gate in Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity and4_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

d: in STD_LOGIC;

p: out STD_LOGIC);

end and4_dat;

architecture and4_dat of and4_dat is

begin

p<=a and b and c and d;

end and4_dat;

--Program for 5 input AND Gate in Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity and5_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

d: in STD_LOGIC;

e: in STD_LOGIC;

p: out STD_LOGIC);

end and5_dat;

architecture and5_dat of and5_dat is

begin

p<=a and b and c and d and e;

end and5_dat;

--Program for 4 input OR Gate in Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity or4_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

d: in STD_LOGIC;

p: out STD_LOGIC);

end or4_dat;

architecture or4_dat of or4_dat is

begin

p<=a or b or c or d;

end or4_dat;

--Program for 4 Bit Comparator in Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity comp4_str is

port (
a: in STD_LOGIC_VECTOR (3 downto 0);

b: in STD_LOGIC_VECTOR (3 downto 0);

aeqb: out STD_LOGIC;

agtb: out STD_LOGIC;

altb: out STD_LOGIC);

end comp4_str;

architecture comp4_str of comp4_str is

component xnor2_dat is

port(a: in STD_LOGIC;

 b: in STD_LOGIC;

 c: out STD_LOGIC);

end component;

component not2_beh is

port(a: in STD_LOGIC;

 c: out STD_LOGIC);

end component;

component and2_dat is

port(a: in STD_LOGIC;

 b: in STD_LOGIC;

 c: out STD_LOGIC);

end component;

component and3_dat is

port(a: in STD_LOGIC;

 b: in STD_LOGIC;

 c: in STD_LOGIC;

 p: out STD_LOGIC);

end component;

component and4_dat is

port(a: in STD_LOGIC;

 b: in STD_LOGIC;

 c: in STD_LOGIC;

 d: in STD_LOGIC;

 p: out STD_LOGIC);

end component;

component and5_dat is

port(a: in STD_LOGIC;

 b: in STD_LOGIC;

 c: in STD_LOGIC;

 d: in STD_LOGIC;

 e: in STD_LOGIC;

 p: out STD_LOGIC);

end component;

component or4_dat is

port(a: in STD_LOGIC;

 b: in STD_LOGIC;

 c: in STD_LOGIC;

 d: in STD_LOGIC;

 p: out STD_LOGIC);

end component;

signal t1,t2,t3,t4,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10: STD_LOGIC;

begin

n1:not2_beh port map(b(0),t1);

n2:not2_beh port map(b(1),t2);

n3:not2_beh port map(b(2),t3);

n4:not2_beh port map(b(3),t4);

x1:xnor2_dat port map(a(0),b(0),s1);

x2:xnor2_dat port map(a(1),b(1),s2);

x3:xnor2_dat port map(a(2),b(2),s3);

x4:xnor2_dat port map(a(3),b(3),s4);

d1:and5_dat port map(a(0),t1,s2,s3,s4,s5);

d2:and4_dat port map(a(1),t2,s3,s4,s6);

d3:and3_dat port map(a(2),t3,s4,s7);

d4:and2_dat port map(a(3),t4,s8);

d5:and4_dat port map(s1,s2,s3,s4,s9);

d6:and4_dat port map(s1,s2,s3,s4,aeqb);

r1:or4_dat port map(s5,s6,s7,s8,s10);

r2:or4_dat port map(s5,s6,s7,s8,agtb);

x5:xnor2_dat port map(s9,s10,altb);

end comp4_str;

Waveforms:

[image: image23.emf]a

a(3)

a(2)

a(1)

a(0)

b

b(3)

b(2)

b(1)

b(0)

agtb

aeqb

altb

 ns 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0 1 2 3 4 5 6 7 8 9 A B C D E F 0

F E D C B A 9 8 7 6 5

4.5 MULTIPLEXER

· Definition: A multiplexers (MUX) is a device that allows digital information from several sources to be routed onto a single line for transmission over that line to a common destination.

· Several data input lines

· Some select line (less than the no. of input lines)

· Single output line

· If there are n data input lines and m select lines, then

 2m = n

Functional Diagram of a Multiplexer:
[image: image24.png]| Output
e e——>"

_____ o0
In-1 L= MUX
DATA
inputs

SELECT

inputs

2 : 1 MULTIPLEXER:

Circuit diagram
[image: image25.jpg]SELECT input

Truth table:
	S
	Z

	0
	I0

	1
	I1

4 : 1 MULTIPLEXER:

Circuit diagram

[image: image26.jpg][]
S, S

Truth table:
	S0
	S1
	Z

	0
	0
	I0

	0
	1
	I1

	1
	0
	I2

	1
	1
	I3

8:1 MULTIPLEXER

Circuit diagram:

[image: image27.png]a0 —
al —

a2 —
a3 —
ad —
a5 —

A6 =7 §x1 Multiplexer
a7 —

En—

[image: image28.png]

Truth table:
	Inputs
	Output

Y

	En
	S
	

	1

0

0

0

0

0

0

0

0
	xxx

000

001

010

011

100

101

110

111
	U

a0

a1

a2

a3

a4

a5

a6

a7

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

 entity mux8x1_dat is

port (
a0: in STD_LOGIC;

a1: in STD_LOGIC;

a2: in STD_LOGIC;

a3: in STD_LOGIC;

a4: in STD_LOGIC;

a5: in STD_LOGIC;

a6: in STD_LOGIC;

a7: in STD_LOGIC;

s: in STD_LOGIC_VECTOR (2 downto 0);

f: out STD_LOGIC);

end mux8x1_dat;

architecture mux8x1_dat of mux8x1_dat is

begin

with s select

f<=a0 when "000",

a1 when "001",

a2 when "010",

a3 when "011",

a4 when "100",

a5 when "101",

a6 when "110",

a7 when "111",

'U' when others;

end mux8x1_dat;

Behavioral Model
library IEEE;

use IEEE.std_logic_1164.all;

entity mux8x1_beh is

port (
a0: in STD_LOGIC;

a1: in STD_LOGIC;

a2: in STD_LOGIC;

a3: in STD_LOGIC;

a4: in STD_LOGIC;

a5: in STD_LOGIC;

a6: in STD_LOGIC;

a7: in STD_LOGIC;

en: in STD_LOGIC;

s: in STD_LOGIC_VECTOR (2 downto 0);

f: out STD_LOGIC);

end mux8x1_beh;

 architecture mux8x1_beh of mux8x1_beh is

begin

process(s)

begin

if(en='0') then

case s is

when "000"=>f<=a0;

when "001"=>f<=a1;

when "010"=>f<=a2;

when "011"=>f<=a3;

when "100"=>f<=a4;

when "101"=>f<=a5;

when "110"=>f<=a6;

when "111"=>f<=a7;

when others=>f<='U';

end case;

else f<='U';

end if;
end process; end mux8x1_beh;

Structural Model

--Program for 4 input AND Gate in Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity and4_dat is

port (a: in STD_LOGIC;

b: in STD_LOGIC;

 c: in STD_LOGIC;

 d: in STD_LOGIC;

 p: out STD_LOGIC);

end and4_dat;

architecture and4_dat of and4_dat is

begin

p<=a and b and c and d;

end and4_dat;

--Program for 8 input OR Gate in Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity or8_dat is

port (
a: in STD_LOGIC;

b: in STD_LOGIC;

c: in STD_LOGIC;

d: in STD_LOGIC;

e: in STD_LOGIC;

f: in STD_LOGIC;

g: in STD_LOGIC;

h: in STD_LOGIC;
p: out STD_LOGIC);

end or8_dat;

architecture or8_dat of or8_dat is

begin

p<=a or b or c or d or e or f or g or h;

end or8_dat;

--Program for NOT Gate in Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity not2_beh is

port (
a: in STD_LOGIC;

c: out STD_LOGIC);

end not2_beh;

architecture not2_beh of not2_beh is

begin

process(a)

begin

If(a='0') then c<='1';

else c<='0';

end if; end process; end not2_beh;

--Program for 8x1Multiplexer in Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity mux8x1_str is

port (
a0: in STD_LOGIC;

a1: in STD_LOGIC;

a2: in STD_LOGIC;

a3: in STD_LOGIC;

a4: in STD_LOGIC;

a5: in STD_LOGIC;

a6: in STD_LOGIC;

a7: in STD_LOGIC;

s : in STD_LOGIC_VECTOR(2 downto 0);

f: out STD_LOGIC);

end mux8x1_str;

architecture mux8x1_str of mux8x1_str is

 component and4_dat is

port(a,b,c,d: in STD_LOGIC;

 p: out STD_LOGIC);

end component;

component or8_dat is

port(a,b,c,d,e,f,g,h: in STD_LOGIC;

 p: out STD_LOGIC);

end component;

component not2_beh is

port(a: in STD_LOGIC;

 c: out STD_LOGIC);

end component;

signal t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10: STD_LOGIC;

begin

n1:not2 port map(s(0),t0);

n2:not2 port map(s(1),t1);

n3:not2 port map(s(2),t2);

d1:and4_dat port map(a0,t0,t1,t2,t3);

d2:and4_dat port map(a1,s(0),t1,t2,t4);

d3:and4_dat port map(a2,t0,s(1),t2,t5);

d4:and4_dat port map(a3,s(0),s(1),t2,t6);

d5:and4_dat port map(a4,t0,t1,s(2),t7);

d6:and4_dat port map(a5,s(0),t1,s(2),t8);

d7:and4_dat port map(a6,t0,s(1),s(2),t9);

d8:and4_dat port map(a7,s(0),s(1),s(2),t10);

r1:or8_dat port map(t3,t4,t5,t6,t7,t8,t9,t10,f);

end mux8x1_str;

expected Waveforms:

[image: image29.emf]a0

a1

a2

a3

a4

a5

a6

a7

s

s(2)

s(1)

s(0)

f

 ns 2 4 6 8 10 12 14 16 18

0 1 2 3 4 5 6 7 0

4.6. 1x4 DEMULTIPLEXER
Circuit diagram:

[image: image30.png]a —

En—

1x4 Demultiplexer

I}
Lyl
I—)
3

[image: image31.jpg]Data
input

Select
lines

SN
BES

S

JUUU

Data
output
lines

Truth table:
	Inputs
	Outputs

y0 y1 y2 y3

	En
	S
	

	0

1

1

1

1
	xx

00

01

10

11
	 0 0 0 0

 a 0 0 0

 0 a 0 0

 0 0 a 0

 0 0 0 a

Program:

Data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity demux2x4_dat is

port (
a: in STD_LOGIC;

s0: in STD_LOGIC;

s1: in STD_LOGIC;

y0: out STD_LOGIC;

y1: out STD_LOGIC;

y2: out STD_LOGIC;

y3: out STD_LOGIC);

end demux2x4_dat;

architecture demux2x4_dat of demux2x4_dat is

begin

y0<=(not s0) and (not s1) and a;

y1<= s0 and (not s1) and a;

y2<=(not s0) and s1 and a;

y3<= s0 and s1 and a;

end demux2x4_dat;

Behavioral Model

library IEEE;

use IEEE.std_logic_1164.all;

entity demux2x4_beh is

port (
a: in STD_LOGIC;

en: in STD_LOGIC;

s: in STD_LOGIC_VECTOR (1 downto 0);

y: out STD_LOGIC_VECTOR (3 downto 0));

end demux2x4_beh;

architecture demux2x4_beh of demux2x4_beh is

begin

process(en,a,s)

begin

if(en='1'and a='1') then

case s is

when "00" =>y<="0001";

when "01" =>y<="0010";

when "10" =>y<="0100";

when "11" =>y<="1000";

when others =>y<="0000";

end case;

else y<="0000";

end if;

end process;

end demux2x4_beh;

Structural Model

--Program for 3 input AND Gate in data flow Model

library IEEE;

use IEEE.std_logic_1164.all;

entity and3_dat is

port (a: in STD_LOGIC;

 b: in STD_LOGIC;

 c: in STD_LOGIC;

 p: out STD_LOGIC);

end and3_dat;

architecture and3_dat of and3_dat is

begin

p<=a and b and c;

end and3_dat;

--Program for NOT Gate in Behavioral Model

ibrary IEEE;

use IEEE.std_logic_1164.all;

entity not2_beh is

port (a: in STD_LOGIC;

 c: out STD_LOGIC);

end not2_beh;

architecture not2_beh of not2_beh is

begin

process(a)

begin

if(a='0') then c<='1';

else c<='0';

end if;

end process;

end not2_beh;

--Program for 1x4 Demultiplexer in Structural Model

library IEEE;

use IEEE.std_logic_1164.all;

entity demux2x4_str is

port (
a: in STD_LOGIC;

s: in STD_LOGIC_VECTOR (1 downto 0);

y0: out STD_LOGIC;

y1: out STD_LOGIC;

y2: out STD_LOGIC;

y3: out STD_LOGIC);

end demux2x4_str;

architecture demux2x4_str of demux2x4_str is

component and3_dat is

port(a,b,c: in STD_LOGIC;

 p: out STD_LOGIC);

end component;

component not2 is

port(a: in STD_LOGIC;

 c: out STD_LOGIC);

end component;

signal t1,t2: STD_LOGIC;

begin

n1: not2 port map(s(0),t1);

n2: not2 port map(s(1),t2);

d1: and3_dat port map(a,t1,t2,y0);

d2: and3_dat port map(a,s(0),t2,y1);

d3: and3_dat port map(a,t1,s(1),y2);

d4: and3_dat port map(a,s(0),s(1),y3);

end demux2x4_str;

expected Waveforms:

[image: image32.emf]a

en

s

y

y(3)

y(2)

y(1)

y(0)

 ns 5 10 15 20 25 30 35 40 45 50 55 60 65

0 1 2 3 0 1 2 3 0 1 2 3 0 1

1 2 4 8 0 1 2 4 8 0

4.7 ENCODER
A digital circuit that produces a binary output code depending on which of its inputs are activated.
[image: image33.png]ELECTRONICENCODER-
DECIMALTO BCD

BCD output

Decimal J
to
o I

Encoder

» Encoders are available in IC form.

* This encoder translates from decimal
input to BCD output.

[image: image34.png]10 line to 4 line Encoder

5,

MsB,

XX S

Cxx XXX KO

p—e0,
—

Inverted
80D

Decimal- O—#0;

080D

priory [O—e 0,

74147
encoder

y\—q
—q

A

A

Ay
—

inputs

BEHAVIORAL MODEL PROGRAM FOR ENCODER(8 to 3)
library IEEE;

use IEEE.std_logic_1164.all;

entity enc_beh is

port (a: out STD_LOGIC_VECTOR (2 downto 0);

 en: in STD_LOGIC;

 y: in STD_LOGIC_VECTOR (7 downto 0));

end enc_beh;

architecture enc_beh of enc_beh is

begin

process(en,a)

begin

if(en='1')then

case a is

when "00000001"=>y<="000";

when "00000010"=>y<="001";

when "00000100"=>y<="010";

when "00001000"=>y<="011";

when "00010000"=>y<="100";

when "00100000"=>y<="101";

when "01000000"=>y<="110";

when "10000000"=>y<="111";

when others=>y<="000";

end case;

else y<="000";

end if;

end process;

end enc_beh;

5.1 GATES AND FLIP-FLOPS
· Gates are the building block of the logic circuits. Their primary function is to perform decision making operations.

· Flip-flops are the building blocks of the digital circuits. Their primary function is to store the binary bits.

[image: image35.png]LOGIC CIRCUITS
Logic circuits are classified into two groups:

Combinationallogiccircuits ogic gates make decisions

Basic building >
blocks include: '”“‘““ AND s R gue

Sequentiallogic circuits Flip Flops have memory
Basic buildingblocks £2) P2} £

include FLIP-FLOPS: RSFF oFF SKFF

Synchronous and Asynchronous Sequential Logic:-
· Synchronous
 – The timing of all state transitions is controlled by a common clock
 – Changes in all variables occur simultaneously

· Asynchronous
 – State transitions occur independently of any clock and normally
 dependent on the timing of transitions in the input variables

 – Changes in more than one output do not necessarily occur

 simultaneously

Clock:-
· A clock is a special device that whose output continuously alternates between 0 and 1.

· The time it takes the clock to change from 1 to 0 and back to 1 is called the clock period, or clock cycle time.

· The clock frequency is the inverse of the clock period. The unit of measurement for frequency is the hertz.

· Clocks are often used to synchronize circuits.
TRIGGERING
· Sequential circuits are dependent on clock pulses apply to their inputs.

· The result of flip-flop responding to a clock input is called clock pulse triggering, of which there are four types. Each type responds to a clock pulse in one of four ways :-

1. High level triggering

2. Low level triggering

3. Positive edge triggering

4. Negative edge triggering

[image: image36.png]High Level Triggering

One type of flip-flop responds to a clock signal during the time at
which it is in the logic High state. This type is identified by a
straight lead at the clock input, as shown below.

Triggers on high clock level

Q
ﬂi K

[image: image37.png]Low Level Triggering

Another type of flip-flop responds to a clock signal during the time at
which it is in the logic Low state. This type is identified by a clock input
lead with a low-state indicator bubble, as shown below.

Triggers on low clock level

L] °
—q ax

ol

[image: image38.png]Positive Edge Triggering

A third type of flip-flop responds to a clock signal during the low-to-
high transition of a clock pulse. This type is identified by a clock
input lead with a triangle, as shown below.

Triggers on this edge
of the clock pulse

[image: image39.png]Negative Edge Triggering
The fourth type of flip-flop responds to a clock signal during the high-

to-low transition of a clock pulse. This type is identified by a clock
input lead with a low-state indicator and triangle, as shown below.

Triggers on this edge
of the clock pulse

J Q
B

[image: image40.png]Latch

Latch are the bi-stable devices which responds
to the change of input logic levels as they occur.

- Q

— Latch

I

Complementory output

“Qis the primary output
Qis its complemetory

Itis said to be in SET state if output Q is high
Itis said to be in RESET state if output Q is low

[image: image41.png]R-S Latch using NOR gate

B Q Q| comment
oflo] g Q, | Previous
- - state
o1 1 0 | SETstete
1|0 o 1 |RESETstate
1|1 | Not | Not Not
defined | defined | defined

ser| LT L
reseT| LT
L S Ny B
L] ¥

The two inputs, S and R
denote “set” and
“reset” respectively.

The latch has memory,
and the present output
is dependent on the
state of the latch

[image: image42.png]R-S Latch using NAND gate

R— So a
Q
SR
Flip-flop
: R Q
s— | Q
— L
a Q| comment e
Q, | & | Previows RESET LT
B I s ol
o 1 1 0 | SETstate B
1 o o 1 RESET
state
o o Not Not Not
defined | defined | defined

[image: image43.png]Level-Sensitive/ Gated RS-Latch

* “Q”only changes when CLK is high (i.e. level-sensitive)
* When CLK is high, behavior same as RS latch

s
C s Q
E = z E
& 1 R Q
Bl
®
E SR Q
0 XX__|Nochange
1 00 |Nochange
1 01 0
1 10 1
1 11 Undefined | Race condition

[image: image44.png]Level-Sensitive D-Latch

> Make level-sensitive D-latch
from level-sensitive RS-latch
by connecting S=DandR=
notD

>Due to NOT gate ,S and R will
always be the complements
of each other. hence S=R=0 or
S=R=1, these inputs will never
appear. This will avoid the
problems associated with

[}

—

D

E

FF

Q

ol

Notmal

Comple-
mentary

SR=00 and SR=11 conditions nnn“w

1
1

0
1

0
1

1
o

Nochange
Reset
Set

[image: image45.png]CLOCKEDR-S FLIP-FLOP

Set FF
S

Reet [,

ASYNCHRONOUS

Outputs of logic circuitcan
change state anytime one
or more input changes

Set FF
s
Clock @
ax
Resat [o Q——
SYNCHRONOUS

exacttime at which any
output can change state

FLIP-FLOPS
· A flip-flop is a bi-stable device, with inputs, that remains in a given state as long as power is applied and until input signals are applied to cause its output to change.

· There are four basic different types of flip-flops:

· SR
· D
· JK
· T
[image: image46.png]CLOCKEDR-S FLIP-FLOP

Symbols:

Truth Table:

Set FF
s
Clock
23
Reset |o

ol

| o | s | & [o][]

s koo

s oo

Nochange
0 1
1 [

Race Race

Normal

Comple-
mentary

[image: image47.png]POSITIVE EDGE TRIGGERED
R-S FLIP-FLOP

TIMING DIAGRAMS

1S Q= 5| 1

— CLK

1 R Ql-—e Rl —T1
ol L

[| S gy N

[image: image48.png]NEGATIVE EDGE TRIGGERED

R-S FLIP-FLOP

R S
s Qs o o |NocHG
—a CLK o 1 SET
3 1 o | REseT
+
R @ 11 |ILLEGAL

[image: image49.png]

[image: image50.png]D Flip-Flop

(Data)

Clk ———1

Y
Wep=

Circuit diagram:

[image: image51.png]!

D
—

dk

D flip flop

Circuit

N

qn

o

Truth table:
	Inputs

pr clr
	Outputs

 q qn

	0 0

0 1

1 0

1 1
	1 1

1 0

0 1

D D’

Program:

library ieee;

use ieee.std_logic_1164.all;

entity dff is

port(pr,cr,clk,d:in std_logic;

 q,qn:inout std_logic);

end dff;

architecture dff1 of dff is

begin

process (Clk)

begin

if(clr=’0’ and pr=’0’) then
 Q<=’1’; Qn<=’1’;

 elsif(clr=’0’) then
 Q<=’0’; Qn<=’1’;

 elsif(pr=’0’) then
 Q<=’1’; Qn<=’0’;

 elsif (clk’event and clk=’1’) then
 Q<=D; Qn<=(Not D);

 else
 Q<=’0’; Qn<=’0’;

end dff1;

[image: image52.png]o Q, Toggle
Race around
condition

RACE AROUND CONDITION
This condition occur when j=k=1 i.e when the latch is in toggle mode.

This can be avoided by

· Using edge triggering J-k flip-flop

· Using master slave flip-flop

[image: image53.png]J-K flip-flop

Toggles on eading edge SRflipfop

of dock signal

Jo—
Sko—|

Ko—

JK
Flip-iop.

[image: image54.png]Set
Clock

Reset

Master slave flip-flop

>

“Master" ! “Slave”
Flip-flop | Flip-flop
1
L |
J Q - J Q100
=4+—PClk | Clk
_{x a—1—x aHioa
]

[image: image55.png]Master slave flip-flop

“Master Latch

“Slave Latch

Q
Ck o—|
K. a
| e | i | [o [|a]
0 0 Nochange
T 0 1 0 1
1 1 o 1 o
1 1 1 o q, Toggle

[image: image56.png]o

T Flip Flop

[image: image57.png]Excitation table

SR flip-flop:-
[o [s | rR_| a [a]

0 0 Nochange
T 0 1 0 1
1 1 0 1 0
1 1 1 Race Race

Excitation table:-

Present state of | Next stateofQ | S,Input
Qn/p n/p

o x
0 1 1 0
1 o o 1
1 1 x 0

[image: image58.png]Present state of | Next stateofQ | JInput K, input
Qo/p ofp
0 0 x

0 1
1 o
1 1

i - B
x

x

[image: image59.png]D flip-flop -!%.-_“
o o

1
Excitation table:-
Present state of | Next stateof Q Input
Qo/p o/p
0 0

» o r o

0 1
1 o
1 1

[image: image60.png]T flip-flop -ﬁ._“
0 No change
T 1 toggle
ation table:-
Qo/p o/p

0 0 0
0 1 1
1 0 1
1 1 0

COUNTERS
· Counters are a specific type of sequential circuit.

· Like registers, the state, or the flip-flop values themselves, serves as the “output.”

· The output value increases by one on each clock cycle.

· After the largest value, the output “wraps around” back to 0.
[image: image61.png]Using two bits:

Counters are classified as two types

1. Asynchronous (or) Ripple counter

 2. Synchronous counter

· A binary counter uses 2 or more single clocked flip-flops depending on the number of bits required
· There are 2 types of counters Synchronous and Asynchronous
· A asynchronous counter uses a single clock at the first stage
· But in a synchronous counter all flip-flops are clocked together with a common clock pulse
[image: image62.png]Asynchronous Counters

* This counter is
called asynchronous
because not all flip
flops are hooked to
the same clock.

1 —»

T Q>

Q—

Q

1
CLK

N

Q

0O =<0=-=20

o

· This is called as a ripple counter due to the way the FFs respond one after another in a kind of rippling effect.

· In a ripple counter, a flip-flop output transition serves as a source for triggering other flip-flops.
[image: image63.png]Cock LM LM NN mnmnmnmnil

o, O0J1lojrfofrjofijofr[of1[o]1l[o]1

0 0 0J1 1[0 0f1 100 0f1 1[0 0J1 1

0,0 0 0 0f1 1 1 100 00 0f1 1 11

0; 4

[image: image64.png]If the clock has period T.
QO has period 2T. Q1
periodis 4T

Withn flip flops the period
is 2"

1 T Q

[

1—=T Q

CLK

—> Q)

[image: image65.png]Afour-bit "up" counter

J
E

[image: image66.png]Q

0

0,

03

BINARY RIPPLE COUNTER

"Up" count sequence

LI ojLojrojrfojr(o

0j1 11 1[0000f1 11

00000fr 111111

[image: image67.png]BINARY COUNTDOWN COUNTER

"Down" count sequence

LI [oJ1(og1(0

1

0

10101 (0

10 0J1 100

1

1

0 0j1 1100

11110000

11111111

1

0

1

0

110000

0 0000%0

SYNCHRONOUS COUNTER
· Synchronous binary counter have a regular pattern can be seen from this figure.

[image: image68.png]A 4-bit synchronous binary counter

2100
FFo o
HOH——% O —44 &

outputs are HIGH T

causing the next FF to o _‘_‘_‘_‘_‘_‘_‘_,—‘—‘—‘—‘—L

toggle

—uoo—
ik c o t
K @ D*l & ap— — ‘ & ap—

The 4-bit binary counter T O
has one more AND gate b it L } .
than the 3-bit counter o _ [[LEJ -
just described. The 5 i SRINEE N
shaded areas show ; [T T T -
where the AND gate 0 [! !

 This is an example of a 4-bit synchronous binary counter, implemented using J-K flip-flops and AND gates
[image: image69.png]BCD RIPPLE COUNTER

unter Timing Diagram

AUV

o
8

(mab)

Reset Puise

© 1 2 3 4 5 &

decade counter
Program:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

entity counter7 is

port(clk:in std_logic;

rst:in std_logic;

tc:out std_logic;

count:buffer std_logic_vector(3 downto 0));

end counter7;

architecture counter71 of counter7 is

begin

process(clk,rst)

begin

if(clk'event and clk='1')then

if(rst='1'or count="1001")then

count<="0000";

else

count<=count+1;

end if;
end if;

if(count="1001")then

tc<='1';

else

tc<='0';

end if;
 end process;end counter71;

special counters:

Special Counters Are
1. Ring Counter

[image: image70.png]Circuit Diagram For Four Bits
Ring Counter

D| Qy D Q 0| Q, D Qs

sayayiyl

Truth Table:
[image: image71.jpg]Q|0 Q|Q

2. Twisted Ring (Or) Johnson Counter

[image: image72.png]Circuit Diagram For Four Bits
Johnson Counter

0| Qy D Q 0| Q, D Qs

SIiTid

Truth Table:
[image: image73.png]Twisted Ring or Johnson Counter

Qo

REGISTERS
>a register is a group of flip-flops capable of storing one bit of information.
>register consists of a group of flip-flops & gates that effect their transition. the flip-flops holds the binary information & the gate control when & how new information is transferred into the register.
 >the simplest register is that which only contains flip-flops , with no external gates.
[image: image74.jpg]—0 oF—o%

It shows how a register constructed with four d flip-flops. The common clock input triggers all flip-flops.
SHIFT REGISTERS
· In digital circuits a shift register is a group of flip flops set up in a linear fashion which have their inputs and outputs connected together in such a way that the data are shifted down the line when the circuit is activated.
· The simplest shift register is one that uses only flip-flops.
Shift registers are classified as four types
1. SISO Shift Register
[image: image75.png]:""a' D af»D q Q -0
a2 [FFA FFB FFC Serial
Data out
CLK CLK CLK CLK
Clock _J7_ l

2. SIPO Shift Register

[image: image76.png]4-bit Parallel Data Output

Qa Qe Q
AL
Seral Q D Q D Q D
o | FrA FFB FFC FFD

cLk LK etk
ClR ClR ClR ClR
Clear I | |

C\ucli-I_ ‘

3. PISO Shift Register

[image: image77.png]s |

A 4:bit parallel-in—serial-out shift register.

4. PIPO Shift Register

[image: image78.png]4-bit Parallel Data Output

S ac Q Q!
D g —T D q —T D q —T D q —I
FFA FFB FFC FFD
CLK CLK CLK CLK
ol | L[]]
Clock ‘
Py Pc Ps Pa

4-bit Parallel Data Input

SHIFT REGISTER

Program:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity sr1 is

port(mode:in std_logic;

ser:in std_logic;

clk1,clk2:in std_logic;

a,b,c,d:in std_logic;

qa,qb,qc,qd:inout std_logic);

end sr1;

architecture sr71 of sr1 is

begin

process(mode,clk1,clk2,a,b,c,d)

begin

if(clk1'event and (not clk1)='1')then

if mode='1'then

qa<=a;
qb<=b;
qc<=c;
qd<=d;

else if(clk2'event and (not clk2)='1')then

elsif mode='0' then

qa<=ser;qb<=qa;qc<=qb;qd<=qc; end if;

end if;

 end if;

end process;

end sr71;

12

