
PL/SQL Introduction:
PL/SQL is a block structured language that enables developers to combine the power of SQL with proc-
edural statements. All the statements of a block are passed to oracle engine all at once which increases
processing speed and decreases the traffic.
Features of PL/SQL:
1.PL/SQL is basically a procedural language, which provides the functionality of decision making,
iteration and many more features of procedural programming languages.
2.PL/SQL can execute a number of queries in one block using single command.
3.One can create a PL/SQL unit such as procedures, functions, packages, triggers, and types, which are
stored in the database for reuse by applications.
4.PL/SQL provides a feature to handle the exception which occurs in PL/SQL block known as exception
handling block.
5.Applications written in PL/SQL are portable to computer hardware or operating system where Oracle
is operational.
6.PL/SQL Offers extensive error checking.
Disadvantages of SQL:
•SQL doesn’t provide the programmers with a technique of condition checking, looping and branching.
•SQL statements are passed to Oracle engine one at a time which increases traffic and decreases
speed.
•SQL has no facility of error checking during manipulation of data.
Differences between SQL and PL/SQL:

SQL PL/SQL

SQL is a single query that is used to perform
DML and DDL operations.

PL/SQL is a block of codes that used to write
the entire program blocks/ procedure/ function,
etc.

It is declarative, that defines what needs to be
done, rather than how things need to be done.

PL/SQL is procedural that defines how the
things needs to be done.

Execute as a single statement. Execute as a whole block.

Mainly used to manipulate data. Mainly used to create an application.

Cannot contain PL/SQL code in it.
It is an extension of SQL, so it can contain SQL
inside it.

Structure of PL/SQL Block:
PL/SQL extends SQL by adding constructs found in procedural languages, resulting in a
structural language that is more powerful than SQL. The basic unit in PL/SQL is a
block. All PL/SQL programs are made up of blocks, which can be nested within each
other.

Typically, each block performs a logical action in the program. A block has the following
structure:
DECLARE declaration statements;
BEGIN executable statements

Declaring Program Data:
With few exceptions, you must declare your variables and constants before you use them.

These declarations are in the declaration section of your PLSQL program.

Your declarations can include variables, constants, TYPEs (such as collection types or

record types), and exceptions.

•Execution section starts with BEGIN and ends with END keyword.This is a mandatory
section and here the program logic is written to perform any task like loops and conditi-
onal statements. It supports all DML commands, DDL commands and SQL*PLUS built-in
functions as well.
•Declare section starts with DECLARE keyword in which variables, constants, records as
cursors can be declared which stores data temporarily. It basically consists definition of
PL/SQL identifiers. This part of the code is optional.
•Exception section starts with EXCEPTION keyword. This section is optional which conta-
ins statements that are executed when a run-time error occurs. Any exceptions can be
handled in this section.

EXCEPTIONS exception handling statements
END;

Variables & Program data:

PL/SQL identifiers
There are several PL/SQL identifiers such as variables, constants, procedures,

cursors, triggers etc.

The basic syntax for a declaration is:
name datatype [NOT NULL] [:= | DEFAULT default_assignment];

Declaring a Variable:
When you declare a variable, PL/SQL allocates memory for the variable’s value and nam-
es the storage location so that the value can be retrieved and changed. The declaration
also specifies the datatype of the variable; this datatype is then used to validate values

assigned to the variable.

•Assignment operator (:=) : It is used to assign a value to a variable.

Variables:

Like several other programming languages, variables in PL/SQL must be declared

prior to its use. They should have a valid name and data type as well.

https://en.wikipedia.org/wiki/Data_manipulation_language
https://en.wikipedia.org/wiki/Data_definition_language

Example to show how to declare variables in PL/SQL :

SQL> SET SERVEROUTPUT ON;

SQL> DECLARE
var1 INTEGER;
var2 REAL;
var3 varchar2(20) ;

BEGIN
null;

END;
/

•SET SERVEROUTPUT ON: It is used to display the buffer used by the dbms_

output.

•var1 INTEGER : It is the declaration of variable, named var1 which is of integer

type. There are many other data types that can be used like float, int, real,

smallint, long etc. It also supports variables used in SQL as well like

NUMBER(prec, scale), varchar, varchar2 etc.

•PL/SQL procedure successfully completed.: It is displayed when the code is

compiled and executed successfully.

•Slash (/) after END;: The slash (/) tells the SQL*Plus to execute the block.

Output:

PL/SQL procedure successfully completed.
Explanation:

-------X-------

Procedure to execute pl/sql programs:
• After connection of run sql -> type: set serveroutput on;
• Type ed [filename].sql and open notepad to write a program .
• Save program as [filename].sql in D:\drive.
• Exit from notepad and return to run sql.
• Type @ d:\[filename].sql -> to run the program.
• Type ed d:\[filename].sql -> to correct errors.
• After execution of program

Type / -> to execute the program again.
❖ -- used for single line comments.
❖ /*[comments]*/ used for multiline comments.

PL/SQL Control Statements:
PL/SQL has three categories of control statements: conditional selection statements, lo-
op statements and sequential control statements.
PL/SQL categories of control statements are:
•Conditional selection statements, which run different statements for different data
values.
The conditional selection statements are IF and CASE.
•Loop statements, which run the same statements with a series of different data values.
The loop statements are the basic LOOP, FOR LOOP, and WHILE LOOP.
The EXIT statement transfers control to the end of a loop. The CONTINUE statement
exits the current iteration of a loop and transfers control to the next iteration.
Both EXIT and CONTINUE have an optional WHEN clause, where you can specify a
condition.
•Sequential control statements, which are not crucial to PL/SQL programming.
The sequential control statements are GOTO, which goes to a specified statement,
and NULL, which does nothing.

Conditional, Sequential, and loop control statements:

1)Conditional Selection Statements:

The conditional selection statements, IF and CASE, run different statements for
different data values.
The IF statement either runs or skips a sequence of one or more statements, depending
on a condition. The IF statement has these forms:
•IF THEN
•IF THEN ELSE
•IF THEN ELSIF

a) IF THEN Statement:
The IF THEN statement either runs or skips a sequence of one or more statements,
depending on a condition.
Syntax:
IF condition THEN

statements
END IF;

b) IF THEN ELSE Statement:

syntax:
IF condition THEN

statements
ELSE

statements
END IF;

If the value of condition is true,the statements run;

otherwise, the else_statements run

c) IF THEN ELSIF Statement:The IF THEN ELSIF statement runs the first statements
for which condition is true. Remaining conditions are not evaluated. If no condition is
true, the else_statements run, if they exist; otherwise, the IF THEN ELSIF statement
does nothing.
Syntax:
IF condition_1 THEN

statements_1
ELSIF condition_2 THEN

statements_2
ELSIF condition_3 THEN

statements_3
...
ELSE

statements
END IF;

d) Simple CASE Statement:The simple CASE statement runs the first statements for

which selector_value equals selector. Remaining conditions are not evaluated. If

no selector_value equals selector, the CASE statement runs else_statements if they

exist and raises the predefined exception CASE_NOT_FOUND otherwise

syntax:

CASE selector
WHEN selector_value_1 THEN statements_1
WHEN selector_value_2 THEN statements_2
...
WHEN selector_value_n THEN statements_n
ELSE

statements
END CASE;

2)LOOP Statements:
Loop statements run the same statements with a series of different values. The loop
statements are:
•Basic LOOP
•FOR LOOP
•WHILE LOOP
•Cursor FOR LOOP
The statements that exit a loop are:
•EXIT
•EXIT WHEN
The statements that exit the current iteration of a loop are:
•CONTINUE
•CONTINUE WHEN

EXIT, EXIT WHEN, CONTINUE, and CONTINUE WHEN and can appear anywhere inside a
loop,

a) Basic LOOP Statement:
syntax:
[label] LOOP

statements
END LOOP [label];

b) FOR LOOP Statement:
The FOR LOOP statement runs one or more statements while the loop index is in a
specified range.
Syntax:
[label] FOR index IN [REVERSE] lower_bound..upper_bound LOOP

statements
END LOOP [label];

c) WHILE LOOP Statement:
The WHILE LOOP statement runs one or more statements while a condition is true.
syntax:
[label] WHILE condition LOOP

statements
END LOOP [label];

3)Sequential Control Statements:
Unlike the IF and LOOP statements, the sequential control statements GOTO and NULL
are not crucial to PL/SQL programming. The GOTO statement, which goes to a specified
statement, is seldom needed Occasionally, it simplifies logic enough to warrant its use.
The NULL statement, which does nothing, can improve readability by making the
meaning and action of conditional statements clear.
Types:
o GOTO Statement
o NULL Statement

a) GOTO Statement:
The GOTO statement transfers control to a label unconditionally. The label must be
unique in its scope and must precede an executable statement or a PL/SQL block. When
run, the GOTO statement transfers control to the labeled statement or block.

b) NULL Statement:
The NULL statement only passes control to the next statement. Some languages refer to
such an instruction as a no-op (no operation).

-------X-------

https://docs.oracle.com/database/121/LNPLS/controlstatements.htm#GUID-7C14CDED-B86F-4496-A1F6-8C3B67E3B032
https://docs.oracle.com/database/121/LNPLS/controlstatements.htm#GUID-FB72FFC2-4B55-45C9-BA38-57511913242F

